848 resultados para Spatial data mining
Resumo:
The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).
Resumo:
Online Social Networks (OSNs) facilitate to create and spread information easily and rapidly, influencing others to participate and propagandize. This work proposes a novel method of profiling Influential Blogger (IB) based on the activities performed on one's blog documents who influences various other bloggers in Social Blog Network (SBN). After constructing a social blogging site, a SBN is analyzed with appropriate parameters to get the Influential Blog Power (IBP) of each blogger in the network and demonstrate that profiling IB is adequate and accurate. The proposed Profiling Influential Blogger (PIB) Algorithm survival rate of IB is high and stable. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Resumo:
A Data Mining model that is able to predict if a flight is going to leave late due to a weather delay. It is used, to be able to get a later connection if you have a connecting flight.
Resumo:
194 p.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Most research on technology roadmapping has focused on its practical applications and the development of methods to enhance its operational process. Thus, despite a demand for well-supported, systematic information, little attention has been paid to how/which information can be utilised in technology roadmapping. Therefore, this paper aims at proposing a methodology to structure technological information in order to facilitate the process. To this end, eight methods are suggested to provide useful information for technology roadmapping: summary, information extraction, clustering, mapping, navigation, linking, indicators and comparison. This research identifies the characteristics of significant data that can potentially be used in roadmapping, and presents an approach to extracting important information from such raw data through various data mining techniques including text mining, multi-dimensional scaling and K-means clustering. In addition, this paper explains how this approach can be applied in each step of roadmapping. The proposed approach is applied to develop a roadmap of radio-frequency identification (RFID) technology to illustrate the process practically. © 2013 © 2013 Taylor & Francis.
Resumo:
Expressed sequence tags (ESTs) are a source for microsatellite development. In the present study, EST-derived microsatelltes (EST-SSRs) were generated and characterized in the common carp (Cyprinus carpio) by data mining from updated public EST databases and by subsequent testing for polymorphism. About 5.5% (555) of 10,088 ESTs contain repeat motifs of various types and lengths with CA being the most abundant dinucleotide one. Out of the 60 EST-SSRs for which PCR primers were designed, 25 loci showed polymorphism in a common carp population with the alleles per locus ranging from 3 to 17 (mean 7). The observed (H-O) and expected (HE) heterozygosities of these EST-SSRs were 0.13-1.00 and 0.12-0.91, respectively. Six EST-SSR loci significantly deviated from the Hardy-Weinberg equilibrium (HWE) expectation, and the remaining 19 loci were in HWE. Of the 60 primer sets, the rates of polymorphic EST-SSRs were 42% in common carp, 17% in crucian carp (Carassius auratus), and 5% in silver carp (Hypophthalmichthys molitrix), respectively. These new EST-SSR markers would provide sufficient polymorphism for population genetic studies and genome mapping of the common carp and its closely related fishes. (c) 2007 Published by Elsevier B.V.
Resumo:
King, R. D. and Wise, P. H. and Clare, A. (2004) Confirmation of Data Mining Based Predictions of Protein Function. Bioinformatics 20(7), 1110-1118
Resumo:
Clare, A. and King R.D. (2003) Data mining the yeast genome in a lazy functional language. In Practical Aspects of Declarative Languages (PADL'03) (won Best/Most Practical Paper award).
Resumo:
Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.
Resumo:
In this letter, we show how a 2.4-GHz retrodirective array operating in a multipath rich environment can be utilized in order to spatially encrypt digital data. For the first time, we give experimental evidence that digital data that has no mathematical encryption applied to it can be successfully recovered only when it is detected with a receiver that is polarization-matched to that of a reference continuous-wave (CW) pilot tone signal. In addition, we show that successful detection with low bit error rate (BER) will only occur within a highly constrained spatial region colocated close to the position of the CW reference signal. These effects mean that the signal cannot be intercepted and its modulated data recovered at locations other than the constrained spatial region around the position from which the retrodirective communication was initiated.