896 resultados para Spatial Decision Support System
Resumo:
The paper presents a multicriteria decision support system, called MultiDecision-2, which consists of two independent parts - MKA-2 subsystem and MKO-2 subsystem. MultiDecision-2 software system supports the decision makers (DMs) in the solving process of different problems of multicriteria analysis and linear (continues and integer) problems of multicriteria optimization. The two subsystems MKA-2 and MKO-2 of of MultiDecision-2 are briefly described in the paper in the terms of the class of the problems being solved, the system structure, the operation with the interface modules for input data entry and the information about DM’s local preferences, as well as the operation with the interface modules for visualization of the current and final solutions.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
* This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision Making."
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).
Resumo:
Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).
Resumo:
This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.
Resumo:
This paper presents a development of decision support systems for solving scheduling problems. It consists of two parts — the first describing the production processes which can be handled by the system and the second describing how the system works.
Resumo:
Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.
Resumo:
This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
This report is the product of a first-year research project in the University Transportation Centers Program. This project was carried out by an interdisciplinary research team at The University of Iowa's Public Policy Center. The project developed a computerized system to support decisions on locating facilities that serve rural areas while minimizing transportation costs. The system integrates transportation databases with algorithms that specify efficient locations and allocate demand efficiently to service regions; the results of these algorithms are used interactively by decision makers. The authors developed documentation for the system so that others could apply it to estimate the transportation and route requirements of alternative locations and identify locations that meet certain criteria with the least cost. The system was developed and tested on two transportation-related problems in Iowa, and this report uses these applications to illustrate how the system can be used.
Resumo:
BACKGROUND: Errors in the decision-making process are probably the main threat to patient safety in the prehospital setting. The reason can be the change of focus in prehospital care from the traditional "scoop and run" practice to a more complex assessment and this new focus imposes real demands on clinical judgment. The use of Clinical Guidelines (CG) is a common strategy for cognitively supporting the prehospital providers. However, there are studies that suggest that the compliance with CG in some cases is low in the prehospital setting. One possible way to increase compliance with guidelines could be to introduce guidelines in a Computerized Decision Support System (CDSS). There is limited evidence relating to the effect of CDSS in a prehospital setting. The present study aimed to evaluate the effect of CDSS on compliance with the basic assessment process described in the prehospital CG and the effect of On Scene Time (OST). METHODS: In this time-series study, data from prehospital medical records were collected on a weekly basis during the study period. Medical records were rated with the guidance of a rating protocol and data on OST were collected. The difference between baseline and the intervention period was assessed by a segmented regression. RESULTS: In this study, 371 patients were included. Compliance with the assessment process described in the prehospital CG was stable during the baseline period. Following the introduction of the CDSS, compliance rose significantly. The post-intervention slope was stable. The CDSS had no significant effect on OST. CONCLUSIONS: The use of CDSS in prehospital care has the ability to increase compliance with the assessment process of patients with a medical emergency. This study was unable to demonstrate any effects of OST.
Resumo:
Nowadays, organizations have plenty of data stored in DB databases, which contain invaluable information. Decision Support Systems DSS provide the support needed to manage this information and planning médium and long-term ?the modus operandi? of these organizations. Despite the growing importance of these systems, most proposals do not include its total evelopment, mostly limiting itself on the development of isolated parts, which often have serious integration problems. Hence, methodologies that include models and processes that consider every factor are necessary. This paper will try to fill this void as it proposes an approach for developing spatial DSS driven by the development of their associated Data Warehouse DW, without forgetting its other components. To the end of framing the proposal different Engineering Software focus (The Software Engineering Process and Model Driven Architecture) are used, and coupling with the DB development methodology, (and both of them adapted to DW peculiarities). Finally, an example illustrates the proposal.
Resumo:
This research was conducted at the Space Research and Technology Centre o the European Space Agency at Noordvijk in the Netherlands. ESA is an international organisation that brings together a range of scientists, engineers and managers from 14 European member states. The motivation for the work was to enable decision-makers, in a culturally and technologically diverse organisation, to share information for the purpose of making decisions that are well informed about the risk-related aspects of the situations they seek to address. The research examined the use of decision support system DSS) technology to facilitate decision-making of this type. This involved identifying the technology available and its application to risk management. Decision-making is a complex activity that does not lend itself to exact measurement or precise understanding at a detailed level. In view of this, a prototype DSS was developed through which to understand the practical issues to be accommodated and to evaluate alternative approaches to supporting decision-making of this type. The problem of measuring the effect upon the quality of decisions has been approached through expert evaluation of the software developed. The practical orientation of this work was informed by a review of the relevant literature in decision-making, risk management, decision support and information technology. Communication and information technology unite the major the,es of this work. This allows correlation of the interests of the research with European public policy. The principles of communication were also considered in the topic of information visualisation - this emerging technology exploits flexible modes of human computer interaction (HCI) to improve the cognition of complex data. Risk management is itself an area characterised by complexity and risk visualisation is advocated for application in this field of endeavour. The thesis provides recommendations for future work in the fields of decision=making, DSS technology and risk management.