938 resultados para Sparse linear system
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.
Resumo:
This work reports on a new software for solving linear systems involving affine-linear dependencies between complex-valued interval parameters. We discuss the implementation of a parametric residual iteration for linear interval systems by advanced communication between the system Mathematica and the library C-XSC supporting rigorous complex interval arithmetic. An example of AC electrical circuit illustrates the use of the presented software.
Resumo:
MSC 2010: 26A33, 44A45, 44A40, 65J10
Resumo:
A new parallel approach for solving a pentadiagonal linear system is presented. The parallel partition method for this system and the TW parallel partition method on a chain of P processors are introduced and discussed. The result of this algorithm is a reduced pentadiagonal linear system of order P \Gamma 2 compared with a system of order 2P \Gamma 2 for the parallel partition method. More importantly the new method involves only half the number of communications startups than the parallel partition method (and other standard parallel methods) and hence is a far more efficient parallel algorithm.
Resumo:
We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
We study linear control problems with quadratic losses and adversarially chosen tracking targets. We present an efficient algorithm for this problem and show that, under standard conditions on the linear system, its regret with respect to an optimal linear policy grows as O(log^2 T), where T is the number of rounds of the game. We also study a problem with adversarially chosen transition dynamics; we present an exponentiallyweighted average algorithm for this problem, and we give regret bounds that grow as O(sqtr p T).
Resumo:
A method is presented to find nonstationary random seismic excitations with a constraint on mean square value such that the response variance of a given linear system is maximized. It is also possible to incorporate the dominant input frequency into the analysis. The excitation is taken to be the product of a deterministic enveloping function and a zero mean Gaussian stationary random process. The power spectral density function of this process is determined such that the response variance is maximized. Numerical results are presented for a single-degree system and an earth embankment modeled as shear beam.
Resumo:
Tridiagonal diagonally dominant linear systems arise in many scientific and engineering applications. The standard Thomas algorithm for solving such systems is inherently serial forming a bottleneck in computation. Algorithms such as cyclic reduction and SPIKE reduce a single large tridiagonal system into multiple small independent systems which can be solved in parallel. We have developed portable cyclic reduction and SPIKE algorithm OpenCL implementations with the intent to target a range of co-processors in a heterogeneous computing environment including Field Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs) and other multi-core processors. In this paper, we evaluate these designs in the context of solver performance, resource efficiency and numerical accuracy.
Resumo:
The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.
Resumo:
Let X be a normal projective threefold over a field of characteristic zero and vertical bar L vertical bar be a base-point free, ample linear system on X. Under suitable hypotheses on (X, vertical bar L vertical bar), we prove that for a very general member Y is an element of vertical bar L vertical bar, the restriction map on divisor class groups Cl(X) -> Cl(Y) is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem, that a very general hypersurface X subset of P-C(3) of degree >= 4 has Pic(X) congruent to Z.
Resumo:
Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.