957 resultados para Sorghum -- Genetics
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.
Resumo:
Objectives To investigate the frequency of the ACTN3 R577X polymorphism in elite endurance triathletes, and whether ACTN3 R577X is significantly associated with performance time. Design Cross-sectional study. Methods Saliva samples, questionnaires, and performance times were collected for 196 elite endurance athletes who participated in the 2008 Kona Ironman championship triathlon. Athletes were of predominantly North American, European, and Australian origin. A one-way analysis of variance was conducted to compare performance times between genotype groups. Multiple linear regression analysis was performed to model the effect of questionnaire variables and genotype on performance time. Genotype and allele frequencies were compared to results from different populations using the chi-square test. Results Performance time did not significantly differ between genotype groups, and age, sex, and continent of origin were significant predictors of finishing time (age and sex: p < 5 × 10−6; continent: p = 0.003) though genotype was not. Genotype and allele frequencies obtained (RR 26.5%, RX 50.0%, XX 23.5%, R 51.5%, X 48.5%) were found to be not significantly different from Australian, Spanish, and Italian endurance athletes (p > 0.05), but were significantly different from Kenyan, Ethiopian, and Finnish endurance athletes (p < 0.01). Conclusions Genotype and allele frequencies agreed with those reported for endurance athletes of similar ethnic origin, supporting previous findings for an association between 577X allele and endurance. However, analysis of performance time suggests that ACTN3 does not alone influence endurance performance, or may have a complex effect on endurance performance due to a speed/endurance trade-off.
Resumo:
Migraine is considered to be a multifactorial disorder in which genetic, environmental, and, in the case of menstrual and menstrually related migraine, hormonal events influence the phenotype. Certainly, the role of female sex hormones in migraine has been well established, yet the mechanism behind this well-known relationship remains unclear. This review focuses on the potential role of hormonally related genes in migraine, summarizes results of candidate gene studies to date, and discusses challenges and issues involved in interpreting hormone-related gene results. In light of the molecular evidence presented, we discuss future approaches for analysis with the view to elucidate the complex genetic architecture that underlies the disorder.
Resumo:
Migraine is a common complex neurological disorder with a well-known but poorly characterized genetic liability. The search for migraine susceptibility genes has been the focus of intense research. It is now believed that common migraine is not a single gene disorder, but attributable to several potentially interacting genetic variants. These variants may differ in each sufferer and interact with environmental factors to set the individual migraine threshold. This genetic liability may play an important role in the clinical heterogeneity seen in migraine and also in the variability of treatment response. This review will look at genetic loci implicated in migraine to date and consider their current or prospective role in migraine therapy. To elucidate the complex nature of migraine genetic liability, approaches that consider detailed endophenotypic profiles that encompass treatment response may provide much more relevant information than simple end diagnosis.
Resumo:
Fundamental misconceptions regarding some basic phylogenetic terminology are presented in this opinion piece. An attempt is made to point out why these misconceptions exist and what may be causing the misapplication of terminology. Clarification is providing via basic definitions and simple explanations. Differences between the scientific fields of genetics and population genetics are discussed. The appropriate use of terminology is advocated and alternative terms are proposed to eliminate one potential source of confusion. It is suggested we use 'sequence data' instead of molecular data and 'non-sequence data' instead of morphological data in the field of phylogenetics and systematics.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
The shared nature of genetic information presents new challenges for legal understandings of the self. Within traditional legal discourses the individual is conceptualised as separate and autonomous. In contrast, the genetic individual is understood as inherently relational. This paper analyses the transformation of our understandings of the personal. The transformative processes are assessed through discussion of the changing meanings of privacy in the context of genetic information within families; changing views over access to information about biological parentage by children conceived through assisted reproductive technology; preimplantation genetic diagnosis and the changing context of reproductive decisionmaking.
Resumo:
Sweet sorghum is receiving significant global interest as an agro-industrial crop because of its capacity to co-produce energy, food, and feed products in integrated biorefineries. This report assesses the opportunities to develop a sweet sorghum industry in Australia, reports on research demonstrating the production of energy, food, and feed products, and assesses the potential economic and sustainability benefits of sweet sorghum biorefineries in the Australian context.
Resumo:
Modern genetic research holds out the promise of a bold new future in which humanity has identified and conquered the genetic roots of many diseases. Genetic science also promises to shed light on who we are, what it is that makes us tick, what it is that makes us the way we are — in short, what it is that makes us human. Yet while genetics are a potential saviour (saving us from disease), it also appears as a threat that at the extremes appears to be the stuff of our worst nightmares, such as the prospect, probably more imagined than real, of rows of cloned individuals. The new genetics hold out the promise that through genetics we will be able to determine what we are, a promise that is simultaneously appealing and terrifying. This chapter discusses the cloning of people and parts, the law’s response to cloning, genetics and diversity, a framework for law reform.
Resumo:
Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.
Resumo:
Posttraumatic stress disorder (PTSD) is a complex syndrome that occurs following exposure to a potentially life threatening traumatic event. This review summarises the literature on the genetics of PTSD including gene–environment interactions (GxE), epigenetics and genetics of treatment response. Numerous genes have been shown to be associated with PTSD using candidate gene approaches. Genome-wide association studies have been limited due to the large sample size required to reach statistical power. Studies have shown that GxE interactions are important for PTSD susceptibility. Epigenetics plays an important role in PTSD susceptibility and some of the most promising studies show stress and child abuse trigger epigenetic changes. Much of the molecular genetics of PTSD remains to be elucidated. However, it is clear that identifying genetic markers and environmental triggers has the potential to advance early PTSD diagnosis and therapeutic interventions and ultimately ease the personal and financial burden of this debilitating disorder.