802 resultados para Somatosensory cortex


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study addresses the extent of divergence in the ascending somatosensory pathways of primates. Divergence of inputs from a particular body part at each successive synaptic step in these pathways results in a potential magnification of the representation of that body part in the somatosensory cortex, so that the representation can be expanded when peripheral input from other parts is lost, as in nerve lesions or amputations. Lesions of increasing size were placed in the representation of a finger in the ventral posterior thalamic nucleus (VPL) of macaque monkeys. After a survival period of 1–5 weeks, area 3b of the somatosensory cortex ipsilateral to the lesion was mapped physiologically, and the extent of the representation of the affected and adjacent fingers was determined. Lesions affecting less than 30% of the thalamic VPL nucleus were without effect upon the cortical representation of the finger whose thalamic representation was at the center of the lesion. Lesions affecting about 35% of the VPL nucleus resulted in a shrinkage of the cortical representation of the finger whose thalamic representation was lesioned, with concomitant expansion of the representations of adjacent fingers. Beyond 35–40%, the whole cortical representation of the hand became silent. These results suggest that divergence of brainstem and thalamocortical projections, although normally not expressed, are sufficiently great to maintain a representation after a major loss of inputs from the periphery. This is likely to be one mechanism of representational plasticity in the cerebral cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute stress increases the risk for neurodegeneration, but the molecular signals regulating the shift from transient stress responses to progressive disease are not yet known. The “read-through” variant of acetylcholinesterase (AChE-R) accumulates in the mammalian brain under acute stress. Therefore, markers of neurodeterioration were examined in transgenic mice overexpressing either AChE-R or the “synaptic” AChE variant, AChE-S. Several observations demonstrate that excess AChE-R attenuates, whereas AChE-S intensifies, neurodeterioration. In the somatosensory cortex, AChE-S transgenics, but not AChE-R or control FVB/N mice, displayed a high density of curled neuronal processes indicative of hyperexcitation. In the hippocampus, AChE-S and control mice, but not AChE-R transgenics, presented progressive accumulation of clustered, heat shock protein 70–immunopositive neuronal fragments and displayed a high incidence of reactive astrocytes. Our findings suggest that AChE-R serves as a modulator that may play a role in preventing the shift from transient, acute stress to progressive neurological disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical coupling by gap junctions is an important form of cell-to-cell communication in early brain development. Whereas glial cells remain electrically coupled at postnatal stages, adult vertebrate neurons were thought to communicate mainly via chemical synapses. There is now accumulating evidence that in certain neuronal cell populations the capacity for electrical signaling by gap junction channels is still present in the adult. Here we identified electrically coupled pairs of neurons between postnatal days 12 and 18 in rat visual cortex, somatosensory cortex, and hippocampus. Notably, coupling was found both between pairs of inhibitory neurons and between inhibitory and excitatory neurons. Molecular analysis by single-cell reverse transcription–PCR revealed a differential expression pattern of connexins in these identified neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μm below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogen receptor β (ERβ) is expressed at high levels in both neurons and glial cells of the central nervous system. The development of ERβ knockout (BERKO) mice has provided a model to study the function of this nuclear receptor in the brain. We have found that the brains of BERKO mice show several morphological abnormalities. There is a regional neuronal hypocellularity in the brain, with a severe neuronal deficit in the somatosensory cortex, especially layers II, III, IV, and V, and a remarkable proliferation of astroglial cells in the limbic system but not in the cortex. These abnormalities are evident as early as 2 mo of age in BERKO mice. As BERKO mice age, the neuronal deficit becomes more pronounced, and, by 2 yr of age, there is degeneration of neuronal cell bodies throughout the brain. This is particularly evident in the substantia nigra. We conclude that ERβ is necessary for neuronal survival and speculate that this gene could have an important influence on the development of degenerative diseases of the central nervous system, such as Alzheimer's disease and Parkinson's disease, as well as those resulting from trauma and stroke in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gangliosides, sialic acid-containing glycosphingolipids, are abundant in the vertebrate (mammalian) nervous system. Their composition is spatially and developmentally regulated, and gangliosides have been widely believed to lay essential roles in establishment of the nervous system, especially in neuritogenesis and synaptogenesis. However, this has never been tested directly. Here we report the generation of mice with a disrupted beta 1,4-N-acetylgalactosaminyltransferase (GM2/GD2 synthase; EC 2.4.1.92) gene. The mice lacked all complex gangliosides. Nevertheless, they did not show any major histological defects in their nervous systems or in gross behavior. Just a slight reduction in the neural conduction velocity from the tibial nerve to the somatosensory cortex, but not to the lumbar spine, was detected. These findings suggest that complex gangliosides are required in neuronal functions but not in the morphogenesis and organogenesis of the brain. The higher levels of GM3 and GD3 expressed in the brains of these mutant mice may be able to compensate for the lack of complex gangliosides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive stimuli reliably induce long-term potentiation (LTP) of synapses in the upper layers of the granular somatosensory cortex but not the agranular motor cortex of rats. Herein we examine, in these same cortical areas, short-term changes in synaptic strength that occur during the LTP induction period. theta-Burst stimulation produced a strong short-term enhancement of synapses in the granular area but only weak enhancement in the agranular area. The magnitude of enhancement during stimulation was strongly correlated with the magnitude of LTP subsequently expressed. Short-term enhancement was abolished by an antagonist of N-methyl-D-aspartate (NMDA) receptors but remained in the presence of a non-NMDA receptor antagonist. Inhibitory postsynaptic potentials of the granular and agranular areas displayed similar frequency sensitivity, but the frequency sensitivity of NMDA receptor-dependent excitatory postsynaptic potentials differed significantly between areas. We propose that pathway-specific differences in short-term enhancement are due to variations in the frequency dependence of NMDA currents; different capacities for short-term enhancement may explain why repetitive stimulation more readily induces LTP in the somatosensory cortex than in the motor cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of day of birth (postnatal day 0; P0) infraorbital nerve section on the morphology of individual thalamocortical axons in rat somatosensory cortex was examined on P3. Thalamic fibers were labeled in fixed brains with the carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, and individual photo-converted thalamocortical fibers were reconstructed. In normal animals on P3, axon arbor terminal formation within layer IV has commenced and terminal arbor width is comparable to that of a cortical "barrel." After infraorbital nerve section, the average width of thalamocortical terminal arbors is significantly greater than is the average arbor width of normal rats of the same age; however, neither the number of branches per terminal arbor nor total arbor length differs between groups. These observations suggest that the role of the periphery in guiding terminal arbor formation is exerted both very rapidly and at the level of the single thalamic axon. Further, these results indicate a close association between individual axon terminal arbor morphology and pattern formation in the rat somatosensory cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (SI), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus SI cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This thunder-and-lightning system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance. (C) 2004 Elsevier Ltd. All rights reserved.