973 resultados para Solon, ca. 630 B.C.-ca. 560 B.C.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
*Partially supported by NATO.
Resumo:
Cette recherche vise à décrire les liens entre les représentations des enfants dans deux systèmes d’écriture: alphabétique et consonantique. Cette étude transversale est déployée auprès de 60 enfants libanais âgés entre 4 et 6 ans. Les écritures des enfants autour de huit mots sont récoltées en français et en arabe. Les résultats ne montrent aucune différence significative entre les deux systèmes d’écriture aux âges de 4 et 5 ans. C’est à l’âge de 6 ans que des différences significatives se présentent entre les deux langues. Les résultats montrent une différence significative des écritures en fonction de l’âge. Ces résultats soutiennent l’hypothèse développementale d’une structuration unique inductive quant aux codes alphabétique français et consonantique arabe. Cette structuration se distingue pour chacune des langues lors de l’entrée formelle dans l’écrit. Descripteurs: 1- émergence, 2- littératie, 3- écriture provisoire, 4- français, 5- arabe
Resumo:
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
Resumo:
The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr4Al6O12SO4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212 + 10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 + 20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a = 24.5 A and approximate composition Al3Sr2CaBi2CuOx has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (C) 1997 Elsevier Science S.A.
Resumo:
Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)4 tetrahedra, planar Cu(OH)4 groups and Ca(OH)3 polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984 cm−1 and infrared bands at 912, 955 and 998 cm−1 are assigned to stretching vibrations of tetragonal boron. The Raman band at 758 cm−1 is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400–600 cm−1 region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609 cm−1. Two infrared bands are found at 3558 and 3607 cm−1. These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501 cm−1 are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
We have examined the stability of the ferromagnetic (FM) state in CaRuO3 and SrRuO3 as a function of the GdFeO3 distortion. Model calculations predict the dependence of the FM transition temperature (T-c) on the rotation angle theta to vary as cos(2)(2 theta) for e(g)-electron systems. However, here, we find an initial increase and then the expected decrease. Furthermore, a much faster decrease is found than predicted for e(g)-electron systems. Considering the specific case of CaRuO3, a larger deviation of the Ru-O-Ru angle from 180 degrees in CaRuO3 as compared to SrRuO3 should result in a more reduced bandwidth, thereby making the former more correlated. The absence of long-range magnetic order in the more correlated CaRuO3 is traced to the strong collapse of various exchange interaction strengths that arises primarily from the volume reduction and increased distortion of the RuO6 octahedra network that accompanies the presence of a smaller ion at the A site.
Resumo:
Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, we have investigated the possibility of replacing the two-coordinate Cu-I in superconducting lead cuprates of the general formula Pb2Sr2(Ca, Y)CU3O8 by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu-I can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data we are unable to precisely obtain the oxidation state and oxygen coordination of Cr, we suggest in analogy with Cr substitution in other similar cuprates that in the title phases (CuO2)-O-I rods are partially replaced by tetrahedral CrO42- groups. Infrared spectroscopy supports the presence of CrO42- groups. The phases Pb1.75Sr2Ca0.2Y0.8O8+delta and Pb1.75Sr2Ca0.2Y0.8CCu2.85Cr0.15O8+delta are superconducting as-prepared, but the substitution of Cr for Cu-I results in a decrease of the Te as well as the superconducting volume fraction. (C) 1996 Academic Press, lnc.
Resumo:
Compounds of the type, LaAFeNbO(6) (A = Ca Sr) have been synthesized to study the electrical and magnetic properties and to examine valence degeneracy. The results show that valence degeneracy is not operative and the compounds are insulating. Magnetic susceptibility data show that part of the Fe is in Fs(2+) state, thus oxidizing part of Nb4+ to Nb5+ by an internal redox mechanism. The presence of mixed valent Fe is confirmed by Mossbauer spectra. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.
Resumo:
Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.
Resumo:
We have synthesized ceramics of A2FeReO6 double-perovskites A2FeReO6 (A=Ba, Ca). Structural characterizations indicate a cubic structure with a=8.0854(1) Å for Ba2FeReO6 and a distorted monoclinic symmetry with a=5.396(1) Å, b=5.522(1) Å, c=7.688(2) Å and β=90.4° for Ca2FeReO6. The barium compound is metallic from 5K to 385K, i.e. no metal-insulator transition has been seen up to 385K, and the calcium compound is semiconducting from 5K to 385K. Magnetization measurements show a ferrimagnetic behavior for both materials, with Tc =315 K for Ba2FeReO6 and above 385K for Ca2FeReO6. At 5K we observed, only for Ba2FeReO6, a negative magnetoresistance of 10% in a magnetic field of 5T. Electrical, magnetic and thermal properties are discussed and compared to those of the analogous compounds Sr2Fe(Mo,Re)O6 recently studied.