959 resultados para Solid-phase Peptide Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

10.1002/hlca.19980810512.abs The synthesis of the Fmoc-protected amino acid 2 is presented. First attempts of amide-bond formation to the homodimer 4 in solution showed only poor coupling yields indicative for the low reactivity of the amino and carboxy groups in the building blocks 1 and 2, respectively (Scheme 1). Best coupling yields were found using dicyclohexylcarbodiimide (DCC) without any additive. The oligomerization of building block 2 adopting the Fmoc ((9H-fluoren-9-ylmethoxy)carbonyl) solid-phase synthesis yielded a mixture of N-terminal-modified distamycin-NA derivatives. By combined HPLC and MALDI-TOF-MS analysis, the N-terminal functional groups could be identified as acetamide and N,N-dimethylformamidine functions, arising from coupling of the N-terminus of the growing chain with residual AcOH or DCC-activated solvent DMF. An improved preparation of building block 2 and coupling protocol led to the prevention of the N-terminal acetylation. However, ‘amidination’ could not be circumvented. A thus isolated tetramer of 2, containing a lysine unit at the C-terminus and a N,N-dimethylformamidine-modified N-terminus, not unexpectedly, showed no complementary base pairing to DNA and RNA, as determined by standard UV-melting-curve analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct, solid phase synthesis of an oligonucleotide conjugate of the antibiotic drug metronidazole was accomplished by the phosphoramidite method. Removal of protecting groups and cleavage from the controlled pore glass (CPG) solid support was successful using mild conditions (20% EtN in pyridine, then conc. NH (aq) at rt for 30 min) whereas standard conditions (conc. NH (aq) at 55°C for 16 h) cleaved the drug. © 2006 by MDPI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The caseins (αs1, αs2, β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1–44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1–44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Substituted-5-phenylmorpholinones have been demonstrated to act as N-protected C-terminus activated alpha-amino acids capable of undergoing solution phase N-terminus peptide extension following standard coupling procedures. The N-acylated morpholinones do not undergo epimerisation of the stereocentre of the C-terminus amino acid residue as oxazolone formation is sterically prevented, although C-terminus peptide coupling is still possible. This convergent approach to peptide synthesis is exemplified by the preparation of L-ala-L-ala-L-ala and L-ala-D-ala-L-ala. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycine-rich proteins (GRP), serve a variety of biological functions. Acanthoscurrin is an antimicrobial GRP isolated front hemocytes-of the Brazilian spider Acanthoscurria gomesiana. Aiming to contribute to the knowledge of the secondary structure and stepwise solid-phase synthesis of GRPs` glycine-rich domains, we attempted to prepare G(101)GGLGGGRGGGYG(113) GGGGYGGGYG(123)GGy(126)GGGKYK(132)-NH(2), acanthoscurrin C-terminal amidated fragment. Although a theoretical prediction did not indicate high aggregation potential for this peptide, repetitive incomplete aminoacylations were observed after incorporating Tyr(126) to the growing peptide-MBHA resin (Boc chemistry) at 60 degrees C. The problem was not solved by varying the coupling reagents or solvents, adding chaotropic salts to the reaction media or changing the resin/chemistry (Rink amide resin/Fmoc chemistry). Some improvement was mode when CLEAR amide resin (Fmoc chemistry) was 32 used, as it allowed for obtaining fragment (G(113)-K(132) NIR-FT-Raman spectra collected for samples of the growing peptide-MBHA, -Rink amide resin and -CLEAR amide resin revealed the presence of beta-sheet structures. Only the combination of CLEAR-amide resin, 60 degrees C, Fmoc-(Fmoc-Hmb)Gly-OH and LiCl (the last two used alternately) was able to inhibit the phenomenon, as proven by NIR-FT-Raman analysis of the growing peptide-resin, allowing the total synthesis of desired 132 fragment Gly(101)-K(132). In summary, this work describes a new difficult sequence, contributes to understanding stepwise solid-phase synthesis of this type of peptide and shows that, at least while protected and linked to a resin, this GRPs glycine-rich motif presents all early tendency to assume beta-sheet structures. (c) 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 65-75, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates, for the first time. a time-resolved electron paramagnetic resonance (EPR) monitoring of a chemical reaction occurring in a polymeric structure. The progress of the coupling of a N-alpha-tert-butyloxycarbonyl-2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (Boc-TOAC) spin probe to a model peptide-resin was followed through EPR spectra. Progressive line broadening of EPR peaks was observed, indicative of an increased population of immobilized spin probe molecules attached to the solid support. The time for spectral stabilization of this process coincided with that determined in a previous Coupling study. thereby validating this in situ quantitative monitoring of the reaction. In addition, the influence of polymer swelling degree and solvent viscosity, as well as of the steric hindrance within beads. on the rate of coupling reaction was also addressed. A deeper evaluation of the latter effect was possible by determining unusual polymer parameters such as the average site-site distance and site-concentration within resin beads in each solvent system. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, siloxane-poly(propylene oxide) discs (PPO disc) prepared using the sol-gel process were used as solid phase in enzyme-linked immunosorbent assays (ELISA) for the detection of anti-hepatitis C virus (HCV) antibodies. The HCV RNA from serum (genotype 1b) was submitted to the RT-PCR technique and subsequent amplification of the HCV core 408 pb. This fragment was cloned into expression vector pET42a and expressed in Escherichia coli as recombinant protein with glutathione S-transferase (GST). Cell cultures were grown and induced having a final concentration of 0.4 x 10(-3) mol L-1 of IPTG. After induction, the cells were harvested and the soluble fraction was analyzed using polyacrilamide gel 15% showing a band with an approximate molecular weight of 44 kDa, the expected size for this GST-fused recombinant protein. The recombinant protein was purified and continued by immunological detection using HCV-positive serum and showed no cross-reactivity with positive samples for other infectious diseases. An ELISA was established using 1.25 ng of recombinant protein per PPO disc, a dilution of 1: 10,000 and 1:40 for a peroxidase conjugate and serum, respectively, and solutions of hydrogen peroxide and 3,3',5,5'-tetra-methylbenzidine in a ratio of 1: 1. The proposed methodology was compared with the ELISA conventional polystyrene-plate procedure and the performance of the PPO discs as a matrix for immunodetection gave an easy synthesis, good performance and reproducibility for commercial application. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of a new octakis[3-(2,2'-dipyridylamine)propyl]octasilsesquioxane (T8-Pr-DPA), and a study of the metal ion preconcentration in fuel ethanol. Batch and column experiments were conducted to investigate for the removal of heavy metal ions from fuel ethanol. The results showed that the Langmuir allowed to describe the sorption equilibrium data of the metal ions on T8-Pr-DPA in a satisfactory way. The following maximum adsorption capacities (in mmolg-1) were determined: 3.62 for Fe (III), 3.32 for Cr (III), 2.15 for Cu (II), 1.80 for Co (II), 1.62 for Pb (II), 1.32 for Ni (II) and 0.88 for Zn (II). The thermodynamic parameters for the adsorption process such as free energy of adsorption (δG), enthalpy of adsorption (δH) and entropy of adsorption (δS) were calculated. Thermodynamic parameters showed that the system has favorable enthalpic, Gibbs free energy, and entropic values. The sorption-desorption of the metal ions has made possible the development of a preconcentration and determination method of metal ions at trace level in fuel ethanol. The method of quantitative analysis for Fe, Cu, Ni and Zn in fuel ethanol by Flame AAS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, limit of detection, limit of quantification, and the relative standard deviation and accuracy. The accuracy of the method was assessed by testing analyte recovery in the fuel ethanol samples. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]-Gm (one disulfide bond) and [Thr2,6,11,15,d-Pro9]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16-Glu-Arg18-NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60?degrees C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu1 and the amidated C-terminal tripeptide Arg16-Glu-Arg18-NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d-Pro9]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.