957 resultados para Solid Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple numerical model which calculates the kinetics of crystallization involving randomly distributed nucleation and isotropic growth is presented. The model can be applied to different thermal histories and no restrictions are imposed on the time and the temperature dependences of the nucleation and growth rates. We also develop an algorithm which evaluates the corresponding emerging grain-size distribution. The algorithm is easy to implement and particularly flexible, making it possible to simulate several experimental conditions. Its simplicity and minimal computer requirements allow high accuracy for two- and three-dimensional growth simulations. The algorithm is applied to explore the grain morphology development during isothermal treatments for several nucleation regimes. In particular, thermal nucleation, preexisting nuclei, and the combination of both nucleation mechanisms are analyzed. For the first two cases, the universal grain-size distribution is obtained. The high accuracy of the model is stated from its comparison to analytical predictions. Finally, the validity of the Kolmogorov-Johnson-Mehl-Avrami model SSSR, is verified for all the cases studied

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Roll forming is an incremental bending process for forming metal sheet, strip or coiled stock. Although Finite Element Analysis (FEA) is a standard tool for metal forming simulation, it is only now being increasingly used for the analysis of the roll forming process. This is because of the excessive computational time due to the long strip length and the multiple numbers of stands that have to be modelled. Typically a single solid element is used through the thickness of the sheet for roll forming simulations. Recent investigations have shown that residual stresses introduced during steel processing may affect the roll forming process and therefore need to be included in roll forming simulations. These residual stresses vary in intensity through the thickness and this cannot be accounted for by using only one solid element through the material thickness, in this work a solid-shell element with an arbitrary number of integration points has been used to simulate the roll forming process. The system modelled is that of roll forming a V-channel with dual phase DP780 sheet steel. In addition, the influence of other modelling parameters, such as friction, on CPU time is further investigated. The numerical results are compared to experimental data and a good correlation has been observed. Additionally the numerical results show that the CPU time is reduced in the model without friction and that considering friction does not have a significant effect on springback prediction in the numerical analysis of the roll forming process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vacuum fluidised beds have a distinct advantage of being operated with reduced mass consumption of the fluidising media. However, a low quality of fluidisation reduces the opportunity to utilise the bubbling regime in vacuum fluidised beds. Fluidisation maps are often used to depict the interface between the quiescent, bubbling and slugging regimes inside a fluidised bed. Such maps have been obtained by visual observations of the fluidisation interface in transparent fluidised beds. For beds which are visually inaccessible fluidisation maps are difficult to obtain. The present work therefore attempts to model the interface travel in a vacuum fluidised bed. The pressure gradient due to the bed weight has been determined to be a main contributor for fluidisation/defluidisation under vacuum. A simple analytical model based on the pressure gradient (PG model) is developed to predict the interface location in a vacuum fluidised bed. For a segregated bed, the Gibilaro-Rowe (GR) model is modified and used to predict the jetsam layer growth along with the fluidisation interface. The predictions are compared with the experimental data for minimally and highly segregated particles and it is seen that for non-segregated powders the predictions are quite accurate. Lack of sufficient knowledge of bubble characteristics, however, impeded accurate prediction of the jetsam growth especially at high flow rates. However, an approximate complete fluidisation interface is successfully predicted using the GR-PG model. © 2014 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on our studies of the stability of model peptide-resin linkage in acid media, we previously proposed a rule for resin selection and a final cleavage protocol applicable to the N-alpha-tert-butyloxycarbonyl (Boc)-peptide synthesis strategy. We found that incorrect choices resulted in decreases in the final synthesis yield, which is highly dependent on the peptide sequence, of as high as 30%. The present paper continues along this line of research but examines the N-alpha-9-fluorenylmethyloxycarbonyl (Fmoc)-synthesis strategy. The vasoactive peptide angiotensin II (All, DRVYIHPF) and its [Gly(8)]-All analogue were selected as model peptide resins. Variations in parameters such as the type of spacer group (linker) between the peptide backbone and the resin, as well as in the final acid cleavage protocol, were evaluated. The same methodology employed for the Boc strategy was used in order to establish rules for selection of the most appropriate linker-resin conjugate or of the peptide cleavage method, depending on the sequence to be assembled. The results obtained after treatment with four cleavage solutions and with four types of linker groups indicate that, irrespective of the circumstance, it is not possible to achieve complete removal of the peptide chains from the resin. Moreover, the Phe-attaching peptide at the C-terminal yielded far less cleavage (50-60%.) than that observed with the Gly-bearing sequences at the same position (70-90%). Lastly, the fastest cleavage occurred with reagent K acid treatment and when the peptide was attached to the Wang resin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.