954 resultados para Solid Electrolyte


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity coefficients of oxygen in copper-tin alloys at 1 1 00°C have been measured by two different equilibrium methodsthe cell Pt, Ni + NiO I ZrOz solid electrolyte I O[Cu + Sn], cermet. Pt and the equilibrium between Cu + Sn alloys and SnO + SiO, slags established via SnO vapour. The results from both types of measurement confirm the work of Block and co-workers and show that other data are in error. The deoxidation equilibria for Sn in liquid copper, with solid SnO, as deoxidation product, have been evaluated at temperatures of interest in copper smelting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid oxide galvanic cells of the type Pt, Ni-NiO I Solid electrolyte ( Ometa,, Cermet. Pt were used to measure the activity coefficient of oxygen in liquid copper at 11 00 and 1 300eC, and in lead at 11 00'C. Similar cells were used to study the activity coefficient of oxygen in the whole range of Cu + Pb alloys at 1100'C and in lead-rich alloys at 900 and 750'C.The results obtained are discussed in terms of proposed solution models. An equation based on the formation of 'species' of the form M,O in solutions of oxygen in binary alloys is shown to fit the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity coefficients of oxygen in liquid lead-tin alloys have been measured between 550 and 1100°C by use of solid oxide galvanic cells Pt, Ni-NiO I Zr02 Solid electrolyte I 0 (Pb + Sn), Cermet, Pt Pt, Fe-FeO I Zr02 Solid electrolyte I O(Pb + Sn), Cermet, Pt Alcock and Richardson's quasi-chemical equation, with the coordination number of atoms set to 2, is found to predict successfully the activity coefficients of oxygen in these alloys.The relative partial molar enthalpy and entropy of oxygen ?t 1 atom per cent in the alloys have been calculated from ttva variation of the activity coefficient with temperature. The addition of tin to an unsaturated solution of oxygen in lead is shown to decrease significantly both the partial molar enthalpy and entropy of oxygen. As the measurements were restricted to a narrow range between 750-1100'C in lead-rich alloys, however, the pronounced variation of the partial molar enthalpy of oxygen with temperature at constant alloy composition predicted by the quasi-chemical model could not be verified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gibbs energy of formation of titania-saturated lead titanate has been determined by e.m.f. measurements on the solid state cell;Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt in the temperature range 1075–1350 K. The results obtained are significantly different from those reported in the literature based upon vapour pressure measurements, employing Knudsen effusion and transportation techniques, and assuming that the vapor phase consisted entirely of monomeric PbO molecules. A reanalysis of the data obtained in the earlier vapor pressure studies using mass spectrometric measurements on polymeric PbO species in the gas phase, gives Gibbs energies of formation of lead titanate which are in better agreement with those obtained in this study. Earlier electrochemical measurements by Mehrotra et al. and more recent electrochemical measurements by Schmahl et al. both employing CaO-ZrO2 solid electrolytes are in good agreement with the present study. The electro-chemical measurements by Schmahl et al. using PbF 2 solid electrolyte give a slightly more positive Gibbs energy of formation. There was no evidence supporting the formation of compounds other than Pb1−xTiO3−x from yellow PbO and rutile form of TiO2 in the temperature range covered in this study.Résumé L'enthalpie libre de formation du titanate de plomb saturé en oxyde de titane a été déterminée par des mesures de FEM de la pile: Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt dans le domaine de températures 1075–1350 K. Les résultats obtenus, different appréciablement de ceux publiés, déterminés par mesures de tensions de vapeur (techniques de transport et d'effusion de Knudsen) en supposant que la phase gazeuse etait uniquement constituée de molécules monomériques de PbO. Une réanalyse des résultats de la littérature, à partir de mesures par spectrométrie de masse sur les polymères de PbO gazeux, donne des enthalpies libres de formation du titanate de plomb se rapprochant de celles obtenues dans cette étude. Les mesures de Mehrotra et al. et plus récemment de Schmahl et al. utilisant toutes deux l'électrolyte CaO-ZrO2 concordent bien avec celles de la présente étude. Les mesures de Schmahl et al., à l'aide de l' électrolyte solide PbF2, donnent une enthalpie de formation légèrement plus positive. Pour la gammede températures étudiée, rien ne permet de supposer que des composés autres que Pb1−x TiO3−x puissent se former à partir du PbO Gaune) et du rutile (TiO2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamic properties of liquid unsaturated Co--O solutions have been determined by electrochemical measurements using (Y sub 2 O sub 3 )ThO sub 2 as solid electrolyte. The cell can be represented as, Pt. MoO sub 2 + Mo | (Y sub 2 O sub 3 )ThO sub 2 | O sub Co , tungsten, Pt, Emf of the cell was measured as a function of oxygen concentration in liquid Co at 1798, 1873 and 1973K. Least-mean squares regression analysis of the experimental data gives for the free energy of solution of diatomic oxygen in liquid Co Delta G exp 0 sub O(Co) = --84935--7.61 T ( plus/minus 400) J/g-atom and self interaction parameter for oxygen epsilon exp O sub O = --97240/T + 40.52 ( plus/minus 1) where the standard state for O is an infinitely dilute solution in which the activity is equal to atomic percent. The present data are discussed in comparison with those reported in the literature and the phase diagram for the Co--O system. 18 ref.--AA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements on the solid state cell, View the MathML source using single crystal CaF2 as the solid electrolyte and CaSO4 as an auxiliary electrode, indicate that the EMF is in agreement with that predicted by the Nernst equation when equilibrium is assumed in the gas phase near the electrodes. The cell can be used to measure the View the MathML source content of gases at temperatures near 1200 K, where approximately 2 h ate required to obtain a steady EMF, without the use of catalysts to improve the kinetics of exchange reaction in the auxiliary electrode. For most applications, the cell EMF will be affected by the presence of water vapour in the gas phase. The cell is well suited for thermodynamic measurements on sulfates, pyrosulfates and their solid and liquid solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamic stability of the compound BaCu2O2 was determined using a solid-state galvanic cell: View the MathML source as a function of temperature in the range 970–1170 K. Single crystal BaF2 was used as the solid electrolyte. The partial pressure of oxygen in the argon gas flowing over the electrodes was 1.27 Pa. The reversible e.m.f. of the cell can be expressed by View the MathML source. The Gibbs free energy of formation of barium cuprite from component oxides according to the reaction View the MathML source is View the MathML source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdeltaG°f,ox=−23600 − 5.91T(±150) J/mol—The ‘second-law’ enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for (silver + rhodium + oxygen) at T = 1173 K has been established by equilibration of samples representing twelve different compositions, and phase identification after quenching by optical and scanning electron microscopy (s.e.m.), X-ray diffraction (x.r.d.), and energy dispersive analysis of X-rays (e.d.x.), Only one ternary oxide, AgRhO2, was found to be stable and a three phase region involving Ag, AgRhO2 and Rh2O3 was identified. The thermodynamic properties of AgRhO2 were measured using a galvanic cell in the temperature range 980 K to 1320 K. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa was used as the reference electrode. The Gibbs free energy of formation of the ternary oxide from the elements, ΔfGo (AgRhO2), can be represented by two linear equations that join at the melting temperature of silver. In the temperature range 980 K to 1235 K, ΔfGo(AgRhO2)/(J . mol-1) = -249080 + 179.08 T/K (±120). Above the melting temperature of silver, in the temperature range 1235 K to 1320 K, ΔfGo(AgRhO2)/(J . mol-1) = -260400 + 188.24 T/K (±95). The thermodynamic properties of AgRhO2 at T = 298.15 K were evaluated from the high temperature data. The chemical potential diagram for (silver + rhodium + oxygen) at T = 1200 K was also computed on the basis of the results of this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of ReO2 in the temperature range from 900 to 1200 K has been determined with high precision using a novel apparatus incorporating a buffer electrode between reference and working electrodes. The role of the buffer electrode was to absorb the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential. It prevented the polarization of the measuring electrode and ensured accurate data. The Re+ReO2 working electrode was placed in a closed stabilized-zirconia crucible to prevent continuous vaporization of Re2O7 at high temperatures. The standard Gibbs energy of the formation of ReO2 can be represented by the equation View the MathML source Accurate values of low and high temperature heat capacity of ReO2 are available in the literature. The thermal data are coupled with the standard Gibbs energy of formation, obtained in this study, to evaluate the standard enthalpy of formation of ReO2 at 298.15 K by the ‘third law’ method. The value of standard enthalpy of formation at 298.15 K is: View the MathML source(ReO2)/kJ mol−1=−445.1 (±0.2). The uncertainty estimate includes both random (2σ) and systematic errors.