977 resultados para Solar Cycle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ionosphere is the ionized component of the Earth's upper atmosphere. Solar EUV radiation is the source of ionospheric ionization. Thus the ionosphere is affected strongly by the variations in solar radiation. Solar flares and solar eclipses can induce remarkable short time changes in solar radiation: the solar radiation would increase suddenly during solar flares and decrease significantly during solar eclipses. Solar flare and eclipse events not only affect directly the photochemical processes, but also affect the dynamic processes, and even affect the neutral atmosphere, which is strongly coupled with the ionosphere. The study on the ionospheric response to solar flares and eclipses can advance our knowledge on the ionosphere and its photochemical and dynamic processes and help us to evaluate the ionospheric parameters (such as ion loss coefficients). In addition, the study on the ionospheric responses to solar flares and eclipses is an important part of the ionospheric space weather, which can provide guides for space weather monitoring. This thesis devotes to the study on the ionospheric responses to solar flares and solar eclipses. I have developed two models to simulate the variations of solar EUV radiation during solar flares and solar eclipses, and involved in developing a 2D mid- and low-latitude ionospheric model. On the basis of some observed data and the ionospheric model, I study the temporal and spatial variations of the ionosphere during solar flares and eclipses, and investigate the influences of solar activity, solar zenith angle, neutral gas density, and magnetic dip angle on the ionospheric responses to solar flares and solar eclipses. The main points of my works and results are summarized as follows. 1. The ionospheric response to the X17.2 solar flare on October 28, 2003 was modeled via using a one-dimension theoretical ionospheric model. The simulated variation of TEC is in accordance with the observations, though there are some differences in the amplitude of the variation. Then I carried out a series of simulations to explore the local time and seasonal dependences of the ionospheric responses to solar flares. These calculations show that the ionospheric responses are largely related with the solar zenith angle (SZA). During the daytime (small SZA), most of the increases in electron density occur at altitudes below 300 km with a peak at around 115 km; whereas around sunrise and sunset (SZA>90°), the strongest ionospheric responses occur at much higher altitudes. The TEC increases slower at sunrise than at sunset, which is caused by the difference in the evolution of SZA at sunrise and sunset: SZA decreases with time at sunrise and increase with time at sunset. The ionospheric response is largest in summer and smallest in winter, which is also related to the seasonal difference of SZA. 2. Based on the observations from the ionosondes in Europe and the ionospheric model, I investigated the differences of the ionosphere responses to solar eclipses between the E-layer and F1-layer. Both the observation and simulation show that the decrease in foF1 due to the solar eclipses is larger than that in foE. This effect is due to that the F1 region locates at the transition height between the atomic ion layer and the molecular ion layer. With the revised model of solar radiation during solar flares, our model calculates the radiations from both the inside and outside of photosphere. Large discrepancy can be found between the observations and the calculations with an unrevised model, while the calculations with the revised model consist with the observations. 3. I also explore the effects of the F2-layer height, local time, solar cycle, and magnetic dip angle on the ionospheric responses to solar eclipses via using an ionospheric model and study on the solar zenith angle and the dip dependences by analyzing the data derived from 23 ionosonde stations during seven eclipse events. Both the measured and simulated results show that these factors have significant effect on the ionospheric response. The larger F2-layer height causes the smaller decrease in foF2, which is because that the electron density response decreases with height. The larger dip results in the smaller eclipse effect on the F2 layer, because the larger dip would cause the more diffusion from the top ionosphere which can make up for the plasma loss. The foF2 response is largest at midday and decreases with the increasing SZA. The foF2 response is larger at high solar activity than at low solar activity. The simulated results show that the local time and solar activity discrepancy of the eclipse effect mainly attribute to the difference of the background neutral gas density. 4. I carried out a statistical study on the latitudinal dependence of the ionospheric response to solar eclipses and modeled this latitudinal dependence by the ionospheric model. Both the observations and simulations show that the foF2 and TEC responses have the same latitudinal dependence: the eclipse effects on foF2 and TEC are smaller at low latitudes than at middle latitudes; at the middle latitudes (>40°), the eclipse effect decreases with increasing latitude. In addition, the simulated results show the change in electron temperature at the heights of above 300 km of low latitudes is much smaller than that at the same heights of middle latitudes. This is due to the smaller decrease in photoelectron production rate at its conjugate low heights. 5. By analyzing the observed data during the October 3, 2005 solar eclipse, I find some significant disturbances in the conjugate region of the eclipse region, including a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2. I also simulated the ionosphere behavior during this eclipse using a mid-low latitude ionospheric model. The simulations reproduce the measured ionospheric disturbances mentioned above in the conjugated hemisphere. The simulations show that the great loss of arriving photoelectron heat from the eclipse region is the principal driving source for the disturbances in the conjugate hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morgan, Huw, Habbal, S.R., Woo, R., (2006) 'The Depiction of Coronal Structure in White-Light Images', Solar Physics 236(2) pp.263-272 RAE2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse présente des reconstructions de l'irradiance totale et spectrale durant les 400 dernières années à l'aide des modèles pour l'irradiance totale et l'irradiance spectrale dans l'ultraviolet développés à l'Université de Montréal. Tous deux sont basés sur la simulation de l'émergence, de la fragmentation et de l'érosion des taches solaires, qui permet d'obtenir une distribution de l'aire des taches sombres et des facules brillantes en fonction du temps. Ces deux composantes sont principalement responsables de la variation de l'irradiance sur l'échelle de temps de la décennie, qui peut être calculée en sommant leur émissivité à celle de la photosphère inactive. La version améliorée du modèle d'irradiance solaire spectrale MOCASSIM inclut une extension de son domaine spectral entre 150 et 400 nm ainsi que de son domaine temporel, débutant originalement en 1874 et couvrant maintenant la période débutant en 1610 jusqu'au présent. Cela permet de reconstruire le spectre ultraviolet durant le minimum de Maunder et de le comparer à celui du minimum de 2009. Les conclusions tirées de cette étude spécifient que l'émissivité dans l'ultraviolet était plus élevée en 2009 que durant le minimum de Maunder, que le niveau de base de la photosphère non magnétisée contribuait pour environ les deux tiers de cette différence et que les structures magnétiques restantes étaient responsables pour le tiers restant. Le modèle d'irradiance totale a vu son domaine temporel étendu sur la même période et une composante représentant le réseau magnétique de façon réaliste y a été ajoutée. Il a été démontré que les observations des 30 dernières années ne sont bien reproduites qu'en incluant la composante du Soleil non magnétisé variable à long terme. Le processus d'optimisation des paramètres libres du modèle a été effectué en minimisant le carré de la somme de l'écart journalier entre les résultats des calculs et les données observées. Les trois composites disponibles, soit celui du PMOD (Physikalisch Meteorologisches Observatorium Davos), d'ACRIM (ACtive Radiometer Irradiance Monitor) et du IRMB (Institut Royal Météorologique de Belgique), ne sont pas en accord entre eux, en particulier au niveau des minima du cycle d'activité, et le modèle permet seulement de reproduire celui du PMOD avec exactitude lorsque la composante variable à long terme est proportionnelle au flux radio à 10.7 cm. Toutefois, en utilisant des polynômes de Lagrange pour représenter la variation du Soleil inactif, l'accord est amélioré pour les trois composites durant les minima, bien que les relations entre le niveau minimal de l'irradiance et la longueur du cycle précédent varient d'un cas à l'autre. Les résultats obtenus avec le modèle d'irradiance spectrale ont été utilisés dans une étude d'intercomparaison de la réponse de la photochimie stratosphérique à différentes représentations du spectre solaire. Les simulations en mode transitoire d'une durée de 10 jours ont été effectuées avec un spectre solaire constant correspondant soit à une période d'activité minimale ou à une période d'activité maximale. Ceci a permis d'évaluer la réponse de la concentration d'ozone à la variabilité solaire au cours d'un cycle et la différence entre deux minima. En plus de ceux de MOCASSIM, les spectres produits par deux modèles ont été utilisés (NRLSSI et MGNM) ainsi que les données de SIM et SOLSTICE/SORCE. La variabilité spectrale de chacun a été extraite et multipliée à un spectre de base représentant le minimum d'activité afin de simuler le spectre au maximum d'activité. Cela a été effectué dans le but d'isoler l'effet de la variabilité seule et d'exclure celui de la valeur absolue du spectre. La variabilité spectrale d'amplitude relativement élevée des observations de SORCE n'a pas provoqué l'inversion de la réponse de l'ozone à hautes altitudes obtenues par d'autres études, ce qui peut être expliqué par la nature même du modèle utilisé ainsi que par sa limite supérieure en altitude. Finalement, la réponse de l'ozone semble être à peu près proportionnelle à la variabilité de l'intégrale du flux pour lambda<241 nm. La comparaison des concentrations d'ozone obtenues avec les spectres originaux au minimum d'activité démontre que leur différence est du même ordre de grandeur que la variabilité entre le minimum et le maximum d'un cycle typique. Le problème du choix de la reconstruction de l'irradiance à utiliser pour les simulations climatiques dans le passé demeure non résolu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simplified general circulation model has been used to investigate the chain of causality whereby changes in tropospheric circulation and temperature are produced in response to stratospheric heating perturbations. Spinup ensemble experiments have been performed to examine the evolution of the tropospheric circulation in response to such perturbations. The primary aim of these experiments is to investigate the possible mechanisms whereby a tropospheric response to changing solar activity over the 11-yr solar cycle could be produced in response to heating of the equatorial lower stratosphere. This study therefore focuses on a stratospheric heating perturbation in which the heating is largest in the tropics. For comparison, experiments are also performed in which the stratosphere is heated uniformly at all latitudes and in which it is heated preferentially in the polar region. Thus, the mechanisms discussed have a wider relevance for the impact of stratospheric perturbations on the troposphere. The results demonstrate the importance of changing eddy momentum fluxes in driving the tropospheric response. This is confirmed by the lack of a similar response in a zonally symmetric model with fixed eddy forcing. Furthermore, it is apparent that feedback between the tropospheric eddy fluxes and tropospheric circulation changes is required to produce the full model response. The quasigeostrophic index of refraction is used to diagnose the cause of the changes in eddy behavior. It is demonstrated that the latitudinal extent of stratospheric heating is important in determining the direction of displacement of the tropospheric jet and storm track.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Counterstreaming electrons (CSEs) are treated as signatures of closed magnetic flux, i.e., loops connected to the Sun at both ends. However, CSEs at 1 AU likely fade as the apex of a closed loop passes beyond some distance R, owing to scattering of the sunward beam along its continually increasing path length. The remaining antisunward beam at 1 AU would then give a false signature of open flux. Subsequent opening of a loop at the Sun by interchange reconnection with an open field line would produce an electron dropout (ED) at 1 AU, as if two open field lines were reconnecting to completely disconnect from the Sun. Thus EDs can be signatures of interchange reconnection as well as the commonly attributed disconnection. We incorporate CSE fadeout into a model that matches time-varying closed flux from interplanetary coronal mass ejections (ICMEs) to the solar cycle variation in heliospheric flux. Using the observed occurrence rate of CSEs at solar maximum, the model estimates R ∼ 8–10 AU. Hence we demonstrate that EDs should be much rarer than CSEs at 1 AU, as EDs can only be detected when the juncture points of reconnected field lines lie sunward of the detector, whereas CSEs continue to be detected in the legs of all loops that have expanded beyond the detector, out to R. We also demonstrate that if closed flux added to the heliosphere by ICMEs is instead balanced by disconnection elsewhere, then ED occurrence at 1 AU would still be rare, contrary to earlier expectations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To test for magnetic flux buildup in the heliosphere from coronal mass ejections (CMEs), we simulate heliospheric flux as a constant background open flux with a time-varying interplanetary CME (ICME) contribution. As flux carried by ejecta can only contribute to the heliospheric flux budget while it remains closed, the ICME flux opening rate is an important factor. Two separate forms for the ICME flux opening rate are considered: (1) constant and (2) exponentially decaying with time. Coronagraph observations are used to determine the CME occurrence rates, while in situ observations are used to estimate the magnetic flux content of a typical ICME. Both static equilibrium and dynamic simulations, using the constant and exponential ICME flux opening models, require flux opening timescales of ∼50 days in order to match the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales are equivalent to a change in the ICME closed flux of only ∼7–12% between 1 and 5 AU, consistent with CSE signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high variability that matches the overall variability of the observed magnetic field intensity remarkably well, including the double peak forming the Gnevyshev gap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray–cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray–cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature results from multi-decadal simulations of coupled chemistry climate models for the recent past are analyzed using multi-linear regression including a trend, solar cycle, lower stratospheric tropical wind, and volcanic aerosol terms. The climatology of the models for recent years is in good agreement with observations for the troposphere but the model results diverge from each other and from observations in the stratosphere. Overall, the models agree better with observations than in previous assessments, primarily because of corrections in the observed temperatures. The annually averaged global and polar temperature trends simulated by the models are generally in agreement with revised satellite observations and radiosonde data over much of their altitude range. In the global average, the model trends underpredict the radiosonde data slightly at the top of the observed range. Over the Antarctic some models underpredict the temperature trend in the lower stratosphere, while others overpredict the trends

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An updated analysis of observed stratospheric temperature variability and trends is presented on the basis of satellite, radiosonde, and lidar observations. Satellite data include measurements from the series of NOAA operational instruments, including the Microwave Sounding Unit covering 1979–2007 and the Stratospheric Sounding Unit (SSU) covering 1979–2005. Radiosonde results are compared for six different data sets, incorporating a variety of homogeneity adjustments to account for changes in instrumentation and observational practices. Temperature changes in the lower stratosphere show cooling of 0.5 K/decade over much of the globe for 1979–2007, with some differences in detail among the different radiosonde and satellite data sets. Substantially larger cooling trends are observed in the Antarctic lower stratosphere during spring and summer, in association with development of the Antarctic ozone hole. Trends in the lower stratosphere derived from radiosonde data are also analyzed for a longer record (back to 1958); trends for the presatellite era (1958–1978) have a large range among the different homogenized data sets, implying large trend uncertainties. Trends in the middle and upper stratosphere have been derived from updated SSU data, taking into account changes in the SSU weighting functions due to observed atmospheric CO2 increases. The results show mean cooling of 0.5–1.5 K/decade during 1979–2005, with the greatest cooling in the upper stratosphere near 40–50 km. Temperature anomalies throughout the stratosphere were relatively constant during the decade 1995–2005. Long records of lidar temperature measurements at a few locations show reasonable agreement with SSU trends, although sampling uncertainties are large in the localized lidar measurements. Updated estimates of the solar cycle influence on stratospheric temperatures show a statistically significant signal in the tropics (30N–S), with an amplitude (solar maximum minus solar minimum) of 0.5 K (lower stratosphere) to 1.0 K (upper stratosphere).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the scientific literature since the 1960s to examine the evolution of modeling tools and observations that have advanced understanding of global stratospheric temperature changes. Observations show overall cooling of the stratosphere during the period for which they are available (since the late 1950s and late 1970s from radiosondes and satellites, respectively), interrupted by episodes of warming associated with volcanic eruptions, and superimposed on variations associated with the solar cycle. There has been little global mean temperature change since about 1995. The temporal and vertical structure of these variations are reasonably well explained bymodels that include changes in greenhouse gases, ozone, volcanic aerosols, and solar output, although there are significant uncertainties in the temperature observations and regarding the nature and influence of past changes in stratospheric water vapor. As a companion to a recent WIREs review of tropospheric temperature trends, this article identifies areas of commonality and contrast between the tropospheric and stratospheric trend literature. For example, the increased attention over time to radiosonde and satellite data quality has contributed to better characterization of uncertainty in observed trends both in the troposphere and in the lower stratosphere, and has highlighted the relative deficiency of attention to observations in the middle and upper stratosphere. In contrast to the relatively unchanging expectations of surface and tropospheric warming primarily induced by greenhouse gas increases, stratospheric temperature change expectations have arisen from experiments with a wider variety of model types, showingmore complex trend patterns associated with a greater diversity of forcing agents.