987 resultados para Soil CO2 emission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se propone analizar el efecto del uso productivo en el Chaco Árido de la provincia de Córdoba, mediante la aplicación de indicadores de sustentabilidad relacionados con la calidad de la materia orgánica y la liberación de nutrientes en el suelo, con la finalidad de aportar a un tema de suma interes para la provincia de Córdoba como es la formulación de criterios y pautas de manejo para la implementación de la Ley de Bosques (N° 26331). Se trabajará en la localidad de San Miguel en el departamento Pocho, en un sitio de bosque no disturbado y en tres sistemas productivos: desmonte selectivo con implantación de pasturas; desmonte total con agricultura bajo riego y desmonte total sobrepastoreado. En cada sitio se medirá “in situ” la emisión de CO2 y se tomaran muestras de suelo a las que se les determinará: a) contenido de materia orgánica total (MO), b) contenido de sustancias húmicas (SH), diferenciando ácidos húmicos (AH) y fúlvicos (AF), c) abundancia y actividad de microorganismos nitrificadores y d) propiedades químicas de los AH y AF. Se calcularán los siguientes índices de sustentabilidad a) materia orgánica biodisponible (MOB=MO–SH); b) índice de humificación (IH=SH/MO); c) tipo de humus (TH=AF/AH; d) índice de mineralización de C (IMC=CO2/MO); e) índice de nitrificación (IN=actividad/abundancia); y f) índice de estabilidad de las fracciones humificadas: compuestos aromáticos/ alifáticos. Los datos serán analizados estadísticamente mediante ANOVA y comparación de medias por LSD (P<0.05) y tests multivariados. We proposed analyze the effect of land use in Arid Chaco of Cordoba province, using sustainability indicators related to organic matter quality and nutrient release in soil, with the aim to formulate management criteria for the implementation of the Ley de Bosques (N° 26331) in Córdoba province. The study will be conducted in San Miguel village in Pocho department, in one undisturbed forest site and three productive systems: selective clearing with grass sowing; total clearing with irrigation agriculture and total clearing with overgrazed. In each site "in situ" CO2 emission will be measured and soil samples will be taken, in which the following parameters will be determined: a) total organic matter content (MO), b) humic substances content (SH), in humic acids (AH) and fulvic acids (AF), c) abundance and activity of nitrifier microorganisms and d) chemical properties of AH and AF. The sustainability indexes will be calculated: biodisponible organic matter (MOB=MO–SH); b) humification index (IH=SH/MO); c) humus type (TH=AF/AH; d) C mineralization index (IMC=CO2/MO); e) nitrifying index (IN=activity/abundance); and f) humic fractions stability index: aromatic/aliphatic compounds. The data will be statistically analyzed by ANOVA and the means will be compared by LSD (P<0.05) and multivariate tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate CO2 emission, canopy characteristics and herbage accumulation in pastures of pensacola bahiagrass under frequencies of defoliation. The experiment was conducted at the Universidade Estadual Paulista Julio de Mesquita Filho, Faculty of Agrarian Sciences and Veterinary of UNESP, Jaboticabal, São Paulo, Brasil. The experimental period was from May 3rd to July 26th 2012. The experimental area comprised 28 m² of pensacola bahiagrass (Paspalum notatum Flügge), divided into 10 plots for allocation of treatment (frequencies of defoliation = 2 or 4 weeks). The following variables were studied: canopy height, light interception, leaf area index, herbage accumulation, tiller density, CO2 emissions, soil temperature and moisture. The frequencies of defoliation in the months of May, June and July slightly affect pensacola bahiagrass characteristics. CO2, soil temperature and moisture are more associated to environmental conditions (months of evaluation) than to the frequencies of defoliation imposed to the canopies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil tillage is one of the agricultural practices that may contribute to increase the loss of carbon through emission of CO2 (FCO2). The aim of this study was to investigate the effect of three soil tillage systems on FCO2, soil temperature and soil moisture in a sugarcane area under reform. The experimental area consisted of three tillage plots: conventional tillage (CT), conventional subsoiling (CS), and localized subsoiling (LS). FCO2, soil temperature and soil moisture were measured over a period of 17 days. FCO2 showed the highest value in CT (0.75 g CO2 m(-2) h(-1)). Soil temperature presented no significant difference (p > 0.05) between LS (26.2 degrees C) and CS (25.9 degrees C). Soil moisture was higher in LS (24%), followed by CS (21.8%) and CT (18.3%). A significant correlation (r = -0.71; p < 0.05) between FCO2 and soil temperature was observed only in CT. The conventional tillage presented a total emission (2,864.3 kg CO2 ha(-1)) higher than the emissions observed in CS (1,970.9 kg CO2 ha(-1)) and LS (1,707.7 kg CO2 ha(-1)). The conversion from CT to LS decreased soil CO2 emissions, reducing the contribution of agriculture in increasing the concentration of greenhouse gases in the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)