983 resultados para Software radio architecture
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
In this and a preceding paper, we provide an introduction to the Fujitsu VPP range of vector-parallel supercomputers and to some of the computational chemistry software available for the VPP. Here, we consider the implementation and performance of seven popular chemistry application packages. The codes discussed range from classical molecular dynamics to semiempirical and ab initio quantum chemistry. All have evolved from sequential codes, and have typically been parallelised using a replicated data approach. As such they are well suited to the large-memory/fast-processor architecture of the VPP. For one code, CASTEP, a distributed-memory data-driven parallelisation scheme is presented. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Joining efforts of academic and corporate teams, we developed an integration architecture - MULTIS - that enables corporate e-learning managers to use a Learning Management System (LMS) for management of educational activities in virtual worlds. This architecture was then implemented for the Formare LMS. In this paper we present this architecture and concretizations of its implementation for the Second Life Grid/OpenSimulator virtual world platforms. Current systems are focused on activities managed by individual trainers, rather than groups of trainers and large numbers of trainees: they focus on providing the LMS with information about educational activities taking place in a virtual world and/or being able to access within the virtual world some of the information stored in the LMS, and disregard the streamlining of activity setup and data collection in multi-trainer contexts, among other administrative issues. This architecture aims to overcome the limitations of existing systems for organizational management of corporate e-learning activities.
Resumo:
O presente projecto tem como objectivo a disponibilização de uma plataforma de serviços para gestão e contabilização de tempo remunerável, através da marcação de horas de trabalho, férias e faltas (com ou sem justificação). Pretende-se a disponibilização de relatórios com base nesta informação e a possibilidade de análise automática dos dados, como por exemplo excesso de faltas e férias sobrepostas de trabalhadores. A ênfase do projecto está na disponibilização de uma arquitectura que facilite a inclusão destas funcionalidades. O projecto está implementado sobre a plataforma Google App Engine (i.e. GAE), de forma a disponibilizar uma solução sob o paradigma de Software as a Service, com garantia de disponibilidade e replicação de dados. A plataforma foi escolhida a partir da análise das principais plataformas cloud existentes: Google App Engine, Windows Azure e Amazon Web Services. Foram analisadas as características de cada plataforma, nomeadamente os modelos de programação, os modelos de dados disponibilizados, os serviços existentes e respectivos custos. A escolha da plataforma foi realizada com base nas suas características à data de iniciação do presente projecto. A solução está estruturada em camadas, com as seguintes componentes: interface da plataforma, lógica de negócio e lógica de acesso a dados. A interface disponibilizada está concebida com observação dos princípios arquitecturais REST, suportando dados nos formatos JSON e XML. A esta arquitectura base foi acrescentada uma componente de autorização, suportada em Spring-Security, sendo a autenticação delegada para os serviços Google Acounts. De forma a permitir o desacoplamento entre as várias camadas foi utilizado o padrão Dependency Injection. A utilização deste padrão reduz a dependência das tecnologias utilizadas nas diversas camadas. Foi implementado um protótipo, para a demonstração do trabalho realizado, que permite interagir com as funcionalidades do serviço implementadas, via pedidos AJAX. Neste protótipo tirou-se partido de várias bibliotecas javascript e padrões que simplificaram a sua realização, tal como o model-view-viewmodel através de data binding. Para dar suporte ao desenvolvimento do projecto foi adoptada uma abordagem de desenvolvimento ágil, baseada em Scrum, de forma a implementar os requisitos do sistema, expressos em user stories. De forma a garantir a qualidade da implementação do serviço foram realizados testes unitários, sendo também feita previamente a análise da funcionalidade e posteriormente produzida a documentação recorrendo a diagramas UML.
Resumo:
A novel high throughput and scalable unified architecture for the computation of the transform operations in video codecs for advanced standards is presented in this paper. This structure can be used as a hardware accelerator in modern embedded systems to efficiently compute all the two-dimensional 4 x 4 and 2 x 2 transforms of the H.264/AVC standard. Moreover, its highly flexible design and hardware efficiency allows it to be easily scaled in terms of performance and hardware cost to meet the specific requirements of any given video coding application. Experimental results obtained using a Xilinx Virtex-5 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which presents a throughput per unit of area relatively higher than other similar recently published designs targeting the H.264/AVC standard. Such results also showed that, when integrated in a multi-core embedded system, this architecture provides speedup factors of about 120x concerning pure software implementations of the transform algorithms, therefore allowing the computation, in real-time, of all the above mentioned transforms for Ultra High Definition Video (UHDV) sequences (4,320 x 7,680 @ 30 fps).
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.
Resumo:
This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
A noncoherent vector delay/frequency-locked loop (VDFLL) architecture for GNSS receivers is proposed. A bank of code and frequency discriminators feeds a central extended Kalman filter that estimates the receiver's position and velocity, besides the clock error. The VDFLL architecture performance is compared with the one of the classic scalar receiver, both for scintillation and multipath scenarios, in terms of position errors. We show that the proposed solution is superior to the conventional scalar receivers, which tend to lose lock rapidly, due to the sudden drops of the received signal power.
Resumo:
This paper presents a layered Smart Grid architecture enhancing security and reliability, having the ability to act in order to maintain and correct infrastructure components without affecting the client service. The architecture presented is based in the core of well design software engineering, standing upon standards developed over the years. The layered Smart Grid offers a base tool to ease new standards and energy policies implementation. The ZigBee technology implementation test methodology for the Smart Grid is presented, and provides field tests using ZigBee technology to control the new Smart Grid architecture approach. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Remote Laboratories or WebLabs constitute a first-order didactic resource in engineering faculties. However, in many cases, they lack a proper software design, both in the client and server side, which degrades their quality and academic usefulness. This paper presents the main characteristics of a Remote Laboratory, analyzes the software technologies to implement the client and server sides in a WebLab, and correlates these technologies with the characteristics to facilitate the selection of a technology to implement a WebLab. The results obtained suggest the adoption of a Service Oriented Laboratory Architecture-based approach for the design of future Remote Laboratories so that client-agnostic Remote Laboratories and Remote Laboratory composition are enabled. The experience with the real Remote Laboratory, WebLab-Deusto, is also presented.
Resumo:
Institutions have been creating their own specific weblab infrastructures. Usually, they use distinct software and hardware architectures comprehending instruments and modules (I&M) able to be parameterized but difficult to be shared. These aspects are impairing their widespread in education, since collaboration between institutions, in developing and sharing resources, is still low. To handle both aspects, this paper proposes the adoption of the IEEE1451.0 Std. with FPGA technology for creating reconfigurable weblab infrastructures. It is suggested the adoption of an IEEE1451.0 infrastructure with compatible instruments, described in Hardware Description Languages (HDL), to be reconfigured in FPGA-based boards. Besides an overview of the IEEE1451.0 Std., this paper presents a solution currently under development which seeks to enable the reconfiguration and the remote control of weblab infrastructures using a set of IEEE1451.0 HTTP commands.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.
Resumo:
20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), Madrid, Spain.