931 resultados para Software Product Lines


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software Product Line (SPL) consists of a software development paradigm, whose main focus is to identify features common and variability among applications in a specific domain. An LPS is designed to attend all products requirements from its product family. These requirements and LPS may have changes over time due to several factors, such as evolution of product requirements, evolution of the market, evolution of SLP process, evolution of the technologies used to develop the products. To handle these changes, LPS should be modified and evolve in order to not become obsolete, and adapt itself to new requirements. The Changes Impact Analysis is an activity that understand and identify what consequences these changes are cause on LPS. Impact Analysis on LPS may be supported by traceability relationships, which identify relationships between artefacts created during all phases of software development. Despite the solutions of change impact analysis based on traceability for software, there is a lack of solutions for assessing the change impact analysis based on traceability for LPS, since existing solutions do not include estimates specific to the artefacts of LPS. Thus, this paper proposes a process of change impact analysis and an tool for assessing the change impact through traceability of artefacts in LPS. For this purpose, we specified a process of change impact analysis that considers artifacts produced during the development of LPS. We have also implemented a tool which allows estimating and identifying artefacts and products of LPS affected from changes in other products, changes in class, changes in features, changes between releases of LPS and artefacts related to changes in core assets and variability. Finally, the results were evaluated through metrics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The approach Software Product Line (SPL) has become very promising these days, since it allows the production of customized systems on large scale through product families. For the modeling of these families the Features Model is being widely used, however, it is a model that has low level of detail and not may be sufficient to guide the development team of LPS. Thus, it is recommended add the Features Model to other models representing the system from other perspectives. The goals model PL-AOVgraph can assume this role complementary to the Features Model, since it has a to context oriented language of LPS's, which allows the requirements modeling in detail and identification of crosscutting concerns that may arise as result of variability. In order to insert PL-AOVgraph in development of LPS's, this paper proposes a bi-directional mapping between PL-AOVgraph and Features Model, which will be automated by tool ReqSys-MDD. This tool uses the approach of Model-Driven Development (MDD), which allows the construction of systems from high level models through successive transformations. This enables the integration of ReqSys-MDD with other tools MDD that use their output models as input to other transformations. So it is possible keep consistency among the models involved, avoiding loss of informations on transitions between stages of development

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Face às dimensões continentais do país, as organizações situadas em regiões carentes de fornecedores de desenvolvimento de sistemas de software especializado estão distribuindo suas operações de Information Technology Outsourcing (ITO), para outras regiões. Como consequência, a redução de custos e a melhoria da contratação de serviços em Tecnologia da Informação (TI) têm sido os dois grandes focos da atualidade, incentivando à noção de parceiros múltiplos em operações recíprocas e engajados tanto em relacionamentos formais quanto informais como a terceirização. Os serviços terceirizados são diversificados e entre eles está o desenvolvimento e manutenção de software através de contratos, realizados por organizações situadas em regiões onde existe demanda de software com características específicas. Sabe-se que a terceirização de Software e Serviços Correlatos (S&SC), que inclui as atividades de contratação e gestão do processo de aquisição é uma tarefa complexa e necessária para as organizações, principalmente no que diz respeito às condições envolvidas na contratação. Nesses casos, o exercício da governança tem sido um importante instrumento para, com a terceirização de TI, promover a gestão adequada do risco e o retorno do investimento. Sendo assim, o processo de compra ou venda de um produto de software nesse ambiente é uma atividade que envolve um grande número de conceitos subjetivos, referentes principalmente a características dos produtos. Torna-se maior o desafio quando se trata de software de prateleira modificável (Modified Off-The-Shelf - MOTS) que sofrem modificações e adições de requisitos a cada novo cliente. Neste contexto, buscando adequar as exigências do mercado com as necessidades de métodos e diretrizes para melhoria dos processos de aquisição e fornecimento de software, este trabalho procura explorar as principais características acerca do contrato, do controle de qualidade, e os resultados dos relacionamentos adotados na implementação de projetos de terceirização desenvolvidos á distância. São apresentados os resultados obtidos de um estudo de caso conduzido em uma empresa pública de Medicina Transfusional situada no norte do Brasil que adotou este processo. Por fim, este texto apresenta uma discussão sobre os diferenciais e limitações deste trabalho, e apresenta direcionamentos para investigações futuras neste campo de estudo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Usability is the capability of the software product to be understood, learned, used and attractive to the user, when used under specified conditions. Many studies demonstrate the benefits of usability, yet to this day software products continue to exhibit consistently low levels of this quality attribute. Furthermore, poor usability in software systems contributes largely to software failing in actual use. One of the main disciplines involved in usability is that of Human-Computer Interaction (HCI). Over the past two decades the HCI community has proposed specific features that should be present in applications to improve their usability, yet incorporating them into software continues to be far from trivial for software developers. These difficulties are due to multiple factors, including the high level of abstraction at which these HCI recommendations are made and how far removed they are from actual software implementation. In order to bridge this gap, the Software Engineering community has long proposed software design solutions to help developers include usability features into software, however, the problem remains an open research question. This doctoral thesis addresses the problem of helping software developers include specific usability features into their applications by providing them with a structured and tangible guidance in the form of a process, which we have termed the Usability-Oriented Software Development Process. This process is supported by a set of Software Usability Guidelines that help developers to incorporate a set of eleven usability features with high impact on software design. After developing the Usability-oriented Software Development Process and the Software Usability Guidelines, they have been validated across multiple academic projects and proven to help software developers to include such usability features into their software applications. In doing so, their use significantly reduced development time and improved the quality of the resulting designs of these projects. Furthermore, in this work we propose a software tool to automate the application of the proposed process. In sum, this work contributes to the integration of the Software Engineering and HCI disciplines providing a framework that helps software developers to create usable applications in an efficient way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software Product Line Engineering (SPLE) is becoming widely used due to the improvement it means when developing software products of the same family. However, SPLE demands long-term investment on a product-line platform that might not be profitable due to rapid changing business settings. Since Agile Software Development (ASD) approaches are being successfully applied in volatile markets, several companies have suggested the idea of integrating SPLE and ASD when a family product has to be developed. Agile Product Line Engineering (APLE) advocates the integration of SPLE and ASD to address their lacks when they are individually applied to software development. A previous literature re-view of experiences and practices on APLE revealed important challenges about how to fully put APLE into practice. Our contribution address several of these challenges by tailoring the agile method Scrum by means of three concepts that we have defined: plastic partial components, working PL-architectures, and reactive reuse.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La Ingeniería del Software (IS) Empírica adopta el método científico a la IS para facilitar la generación de conocimiento. Una de las técnicas empleadas, es la realización de experimentos. Para que el conocimiento obtenido experimentalmente adquiera el nivel de madurez necesario para su posterior uso, es necesario que los experimentos sean replicados. La existencia de múltiples replicaciones de un mismo experimento conlleva la existencia de numerosas versiones de los distintos productos generados durante la realización de cada replicación. Actualmente existe un gran descontrol sobre estos productos, ya que la administración se realiza de manera informal. Esto causa problemas a la hora de planificar nuevas replicaciones, o intentar obtener información sobre las replicaciones ya realizadas. Para conocer con detalle la dimensión del problema a resolver, se estudia el estado actual de la gestión de materiales experimentales y su uso en replicaciones, así como de las herramientas de gestión de materiales experimentales. El estudio concluye que ninguno de los enfoques estudiados proporciona una solución al problema planteado. Este trabajo persigue como objetivo mejorar la administración de los materiales experimentales y replicaciones de experimentos en IS para dar soporte a la replicación de experimentos. Para satisfacer este objetivo, se propone la adopción en experimentación de los paradigmas de Gestión de Configuración del Software (GCS) y Línea de Producto Software (LPS). Para desarrollar la propuesta se decide utilizar el método de investigación acción (en inglés action research). Para adoptar la GCS a experimentación, se comienza realizando un estudio del proceso experimental como transformación de productos; a continuación, se realiza una adopción de conceptos fundamentada en los procesos del desarrollo software y de experimentación; finalmente, se desarrollan un conjunto de instrumentos, que se incorporan a un Plan de Gestión de Configuración de Experimentos (PGCE). Para adoptar la LPS a experimentación, se comienza realizando un estudio de los conceptos, actividades y fases que fundamentan la LPS; a continuación, se realiza una adopción de los conceptos; finalmente, se desarrollan o adoptan las técnicas, simbología y modelos para dar soporte a las fases de la Línea de Producto para Experimentación (LPE). La propuesta se valida mediante la evaluación de su: viabilidad, flexibilidad, usabilidad y satisfacción. La viabilidad y flexibilidad se evalúan mediante la instanciación del PGCE y de la LPE en experimentos concretos en IS. La usabilidad se evalúa mediante el uso de la propuesta para la generación de las instancias del PGCE y de LPE. La satisfacción evalúa la información sobre el experimento que contiene el PGCE y la LPE. Los resultados de la validación de la propuesta muestran mejores resultados en los aspectos de usabilidad y satisfacción a los experimentadores. ABSTRACT Empirical software engineering adapts the scientific method to software engineering (SE) in order to facilitate knowledge generation. Experimentation is one of the techniques used. For the knowledge generated experimentally to acquire the level of maturity necessary for later use, the experiments have to be replicated. As the same experiment is replicated more than once, there are numerous versions of all the products generated during a replication. These products are generally administered informally without control. This is troublesome when it comes to planning new replications or trying to gather information on replications conducted in the past. In order to grasp the size of the problem to be solved, this research examines the current state of the art of the management and use of experimental materials in replications, as well as the tools managing experimental materials. The study concludes that none of the analysed approaches provides a solution to the stated problem. The aim of this research is to improve the administration of SE experimental materials and experimental replications in support of experiment replication. To do this, we propose the adaptation of software configuration management (SCM) and software product line (SPL) paradigms to experimentation. The action research method was selected in order to develop this proposal. The first step in the adaptation of the SCM to experimentation was to analyse the experimental process from the viewpoint of the transformation of products. The concepts were then adapted based on software development and experimentation processes. Finally, a set of instruments were developed and added to an experiment configuration management plan (ECMP). The first step in the adaptation of the SPL to experimentation is to analyse the concepts, activities and phases underlying the SPL. The concepts are then adapted. Finally, techniques, symbols and models are developed or adapted in support of the experimentation product line (EPL) phases. The proposal is validated by evaluating its feasibility, flexibility, usability and satisfaction. Feasibility and flexibility are evaluated by instantiating the ECMP and the EPL in specific SE experiments. Usability is evaluated by using the proposal to generate the instances of the ECMP and EPL. The results of the validation of the proposal show that the proposal performs better with respect to usability issues and experimenter satisfaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La innovación en Sistemas Intesivos en Software está alcanzando relevancia por múltiples razones: el software está presente en sectores como automóvil, teléfonos móviles o salud. Las empresas necesitan conocer aquellos factores que afectan a la innovación para incrementar las probabilidades de éxito en el desarrollo de sus productos y, la evaluación de productos sofware es un mecanismo potente para capturar este conocimiento. En consecuencia, las empresas necesitan evaluar sus productos desde la perpectiva de innovación para reducir la distancia entre los productos desarrollados y el mercado. Esto es incluso más relevante en el caso de los productos intensivos en software, donde el tiempo real, la oportunidad, complejidad, interoperabilidad, capacidad de respuesta y compartción de recursos son características críticas de los nuevos sistemas. La evaluación de la innovación de productos ya ha sido estudiada y se han definido algunos esquemas de evaluación pero no son específicos para Sistemas intensivos en Sofwtare; además, no se ha alcanzado consenso en los factores ni el procedimiento de evaluación. Por lo tanto, tiene sentido trabajar en la definición de un marco de evaluación de innovación enfocado a Sistemas intesivos en Software. Esta tesis identifica los elementos necesarios para construir in marco para la evaluación de de Sistemas intensivos en Software desde el punto de vista de la innovación. Se han identificado dos componentes como partes del marco de evaluación: un modelo de referencia y una herramienta adaptativa y personalizable para la realización de la evaluación y posicionamiento de la innovación. El modelo de referencia está compuesto por cuatro elementos principales que caracterizan la evaluación de innovación de productos: los conceptos, modelos de innovación, cuestionarios de evaluación y la evaluación de productos. El modelo de referencia aporta las bases para definir instancias de los modelos de evaluación de innovación de productos que pueden se evaluados y posicionados en la herramienta a través de cuestionarios y que de forma automatizada aporta los resultados de la evaluación y el posicionamiento respecto a la innovación de producto. El modelo de referencia ha sido rigurosamente construido aplicando modelado conceptual e integración de vistas junto con la aplicación de métodos cualitativos de investigación. La herramienta ha sido utilizada para evaluar productos como Skype a través de la instanciación del modelo de referencia. ABSTRACT Innovation in Software intensive Systems is becoming relevant for several reasons: software is present embedded in many sectors like automotive, robotics, mobile phones or heath care. Firms need to have knowledge about factors affecting the innovation to increase the probability of success in their product development and the assessment of innovation in software products is a powerful mechanism to capture this knowledge. Therefore, companies need to assess products from an innovation perspective to reduce the gap between their developed products and the market. This is even more relevant in the case of SiSs, where real time, timeliness, complexity, interoperability, reactivity, and resource sharing are critical features of a new system. Many authors have analysed product innovation assessment and some schemas have been developed but they are not specific to SiSs; in addition, there is no consensus about the factors or the procedures for performing an assessment. Therefore, it has sense to work in the definition of a customized software product innovation evaluation framework. This thesis identifies the elements needed to build a framework to assess software products from the innovation perspective. Two components have been identified as part of the framework to assess Software intensive Systems from the innovation perspective: a reference-model and an adaptive and customizable tool to perform the assessment and to position product innovation. The reference-model is composed by four main elements characterizing product innovation assessment: concepts, innovation models, assessment questionnaires and product assessment. The reference model provides the umbrella to define instances of product innovation assessment models that can be assessed and positioned through questionnaires in the proposed tool that also provides automation in the assessment and positioning of innovation. The reference-model has been rigorously built by applying conceptual modelling and view integration integrated with qualitative research methods. The tool has been used to assess products like Skype through models instantiated from the reference-model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research into software engineering teams focuses on human and social team factors. Social psychology deals with the study of team formation and has found that personality factors and group processes such as team climate are related to team effectiveness. However, there are only a handful of empirical studies dealing with personality and team climate and their relationship to software development team effectiveness. Objective We present aggregate results of a twice replicated quasi-experiment that evaluates the relationships between personality, team climate, product quality and satisfaction in software development teams. Method Our experimental study measures the personalities of team members based on the Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, neuroticism) and team climate factors (participative safety, support for innovation, team vision and task orientation) preferences and perceptions. We aggregate the results of the three studies through a meta-analysis of correlations. The study was conducted with students. Results The aggregation of results from the baseline experiment and two replications corroborates the following findings. There is a positive relationship between all four climate factors and satisfaction in software development teams. Teams whose members score highest for the agreeableness personality factor have the highest satisfaction levels. The results unveil a significant positive correlation between the extraversion personality factor and software product quality. High participative safety and task orientation climate perceptions are significantly related to quality. Conclusions First, more efficient software development teams can be formed heeding personality factors like agreeableness and extraversion. Second, the team climate generated in software development teams should be monitored for team member satisfaction. Finally, aspects like people feeling safe giving their opinions or encouraging team members to work hard at their job can have an impact on software quality. Software project managers can take advantage of these factors to promote developer satisfaction and improve the resulting product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A better understanding of Open Source Innovation in Physical Product (OSIP) might allow project managers to mitigate risks associated with this innovation model and process, while developing the right strategies to maximise OSIP outputs. In the software industry, firms have been highly successful using Open Source Innovation (OSI) strategies. However, OSI in the physical world has not been studied leading to the research question: What advantages and disadvantages do organisations incur from using OSI in physical products? An exploratory research methodology supported by thirteen semi-structured interviews helped us build a seven-theme framework to categorise advantages and disadvantages elements linked with the use of OSIP. In addition, factors impacting advantage and disadvantage elements for firms using OSIP were identified as: „h Degree of openness in OSIP projects; „h Time of release of OSIP in the public domain; „h Use of Open Source Innovation in Software (OSIS) in conjunction with OSIP; „h Project management elements (Project oversight, scope and modularity); „h Firms. Corporate Social Responsibility (CSR) values; „h Value of the OSIP project to the community. This thesis makes a contribution to the body of innovation theory by identifying advantages and disadvantages elements of OSIP. Then, from a contingency perspective it identifies factors which enhance or decrease advantages, or mitigate/ or increase disadvantages of OSIP. In the end, the research clarifies the understanding of OSI by clearly setting OSIP apart from OSIS. The main practical contribution of this paper is to provide manager with a framework to better understand OSIP as well as providing a model, which identifies contingency factors increasing advantage and decreasing disadvantage. Overall, the research allows managers to make informed decisions about when they can use OSIP and how they can develop strategies to make OSIP a viable proposition. In addition, this paper demonstrates that advantages identified in OSIS cannot all be transferred to OSIP, thus OSIP decisions should not be based upon OSIS knowledge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With its genesis in New England during the 1800's, the purse seine fishery for Atlantic menhaden, Brevoortia tyrannus, expanded south and by the early 1900's ranged the length of the eastern seaboard. The purse seine fishery for Gulf menhaden. B. patronus, is of relatively recent development, exploitation of the stock beginning in the late 1940's. Landings from both fisheries annually comprise 35-40% of the total U. S. fisheries landings, ranking menhaden first in terms of volume landed. Technological advances in harvesting methods, fish-spotting capabilities, and vessel designs accelerated after World War II, resulting in larger, faster, and wider-ranging carrier vessels, improved speed and efficiency of the harvest, and reduction in labor requirements. Chief products of the menhaden industry are fish meal, fish oil, and solubles, but research into new product lines is underway. Since 1955 on the Atlantic coast and 1964 on the Gulf coast, the NMFS has monitored the fisheries for biostatistical data. Annual data summaries of numbers-of-fish-at-age harvested, catch tonnage, and fishing effort of the fleet form the basis of routine stock assessments and annual catch forecasts to industry for the upcoming fishing season. After landings declined in the 1960's, the Atlantic menhaden stock has recovered through the 1970's and 1980's. Exceptional year classes of Gulf menhaden in recent years account for record landings during the 1980's.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为给软件产品线决策者应用软件产品线模型提供理论上的参考,综合分析比较了近年来的20种软件产品线模型,在对软件产品线模型的投资循环、重用方式、货币时间价值、经济函数、成本因子和重用成本等方面因素进行细致分析的基础上提出了软件产品线模型的比较框架,在该框架内着重分析了其中5种典型的软件产品线模型,对应用软件产品线开发方式的成本估算和投资分析做了细致分析,并对当前软件产品线模型时存在的问题和发展方向进行了探讨.