951 resultados para Sodium-Glucose Transporter 1
Resumo:
Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease.
Resumo:
The inhibition of β-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of β-galactosidase expression by glucose and a diauxic growth were observed when the lacL8UV5 cells were grown on a glucose–lactose medium. The addition of isopropyl β-d-thiogalactoside to the culture medium eliminated the glucose effect. Disruption of the crr gene or overproduction of LacY also eliminated the glucose effect. These results are fully consistent with our previous finding that the glucose effect in wild-type cells growing in a glucose–lactose medium is not due to the reduction of CRP–cAMP levels but is due to the inducer exclusion. We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted. Evidence suggested that CRP–cAMP may not enhance directly the lac repressor action in vivo. Northern blot analysis revealed that the mRNA for ptsG, a major glucose transporter gene, was markedly reduced in a Δcrp or Δcya background. The constitutive expression of the ptsG gene by the introduction of a multicopy plasmid restored the glucose effect in Δcya or Δcrp cells. We conclude that CRP–cAMP plays a crucial role in inducer exclusion, which is responsible for the glucose–lactose diauxie, by activating the expression of the ptsG gene.
Resumo:
In an attempt to define the mechanism of insulin-regulated glucose transporter 4 (Glut4) translocation, we have developed an in vitro reconstitution assay. Donor membranes from 3T3-L1 adipocytes transfected with mycGlut4 were incubated with plasma membrane (PM) from nontransfected 3T3-L1 cells, and the association was assessed by using two types of centrifugation assays. Association of mycGlut4 vesicles derived from donor membranes with the PM was concentration-, temperature-, time-, and Ca2+-dependent but ATP-independent. Addition of a syntaxin 4 fusion protein produced a biphasic response, increasing association at low concentration and inhibiting association at higher concentrations. PM from insulin-stimulated cells showed an enhanced association as compared with those from untreated cells. Use of donor membranes from insulin-stimulated cells further enhanced the association and also enhanced association to the PM from isolated rat adipocytes. Addition of cytosol, GTP, or guanosine 5′-[γ-thio]triphosphate decreased the association. In summary, insulin-induced Glut4 translocation can be reconstituted in vitro to a limited extent by using isolated membranes. This association appears to involve protein–protein interactions among the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. Finally, the ability of insulin to enhance association depends on insulin-induced changes in the PM and, to a lesser extent, in the donor membranes.
Resumo:
Insulin and guanosine-5′-O-(3-thiotriphosphate) (GTPγS) both stimulate glucose transport and translocation of the insulin-responsive glucose transporter 4 (GLUT4) to the plasma membrane in adipocytes. Previous studies suggest that these effects may be mediated by different mechanisms. In this study we have tested the hypothesis that these agonists recruit GLUT4 by distinct trafficking mechanisms, possibly involving mobilization of distinct intracellular compartments. We show that ablation of the endosomal system using transferrin-HRP causes a modest inhibition (∼30%) of insulin-stimulated GLUT4 translocation. In contrast, the GTPγS response was significantly attenuated (∼85%) under the same conditions. Introduction of a GST fusion protein encompassing the cytosolic tail of the v-SNARE cellubrevin inhibited GTPγS-stimulated GLUT4 translocation by ∼40% but had no effect on the insulin response. Conversely, a fusion protein encompassing the cytosolic tail of vesicle-associated membrane protein-2 had no significant effect on GTPγS-stimulated GLUT4 translocation but inhibited the insulin response by ∼40%. GTPγS- and insulin-stimulated GLUT1 translocation were both partially inhibited by GST-cellubrevin (∼50%) but not by GST-vesicle-associated membrane protein-2. Incubation of streptolysin O-permeabilized 3T3-L1 adipocytes with GTPγS caused a marked accumulation of Rab4 and Rab5 at the cell surface, whereas other Rab proteins (Rab7 and Rab11) were unaffected. These data are consistent with the localization of GLUT4 to two distinct intracellular compartments from which it can move to the cell surface independently using distinct sets of trafficking molecules.
Resumo:
We describe the localization of the recently identified glucose transporter GLUTx1 and the regulation of GLUTx1 in the hippocampus of diabetic and control rats. GLUTx1 mRNA and protein exhibit a unique distribution when compared with other glucose transporter isoforms expressed in the rat hippocampus. In particular, GLUTx1 mRNA was detected in hippocampal pyramidal neurons and granule neurons of the dentate gyrus as well as in nonprincipal neurons. With immunohistochemistry, GLUTx1 protein expression is limited to neuronal cell bodies and the most proximal dendrites, unlike GLUT3 expression that is observed throughout the neuropil. Immunoblot analysis of hippocampal membrane fractions revealed that GLUTx1 protein expression is primarily localized to the intracellular compartment and exhibits limited association with the plasma membrane. In streptozotocin diabetic rats compared with vehicle-treated controls, quantitative autoradiography showed increased GLUTx1 mRNA levels in pyramidal neurons and granule neurons; up-regulation of GLUTx1 mRNA also was found in nonprincipal cells, as shown by single-cell emulsion autoradiography. In contrast, diabetic and control rats expressed similar levels of hippocampal GLUTx1 protein. These results indicate that GLUTx1 mRNA and protein have a unique expression pattern in rat hippocampus and suggest that streptozotocin diabetes increases steady-state mRNA levels in the absence of concomitant increases in GLUTx1 protein expression.
Resumo:
High-fat intake leading to obesity contributes to the development of non-insulin-dependent diabetes mellitus (NIDDM, type 2). Similarly, mice fed a high-fat (safflower oil) diet develop defective glycemic control, hyperglycemia, and obesity. To assess the effect of a modest increase in the expression of GLUT4 (the insulin-responsive glucose transporter) on impaired glycemic control caused by fat feeding, transgenic mice harboring a GLUT4 minigene were fed a high-fat diet. Low-level tissue-specific (heart, skeletal muscle, and adipose tissue) expression of the GLUT4 minigene in transgenic mice prevented the impairment of glycemic control and accompanying hyperglycemia, but not obesity, caused by fat feeding. Thus, a small increase (< or = 2-fold) in the tissue level of GLUT4 prevents a primary symptom of the diabetic state in a mouse model, suggesting a possible target for intervention in the treatment of NIDDM.
Resumo:
STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis
Resumo:
Hepatic hemosiderosis and increased iron absorption are common findings in cirrhosis. It has been proposed that a positive relation exists between intestinal iron absorption and the development of hepatic hemosiderosis. The current study investigated the duodenal expression of the iron transport molecules divalent metal transporter 1 (DMT1 [IRE]), iron-regulated gene 1 (Ireg1 [ferroportin]), hephaestin, and duodenal cytochrome b (Dyctb) in 46 patients with cirrhosis and 20 control subjects. Total RNA samples were extracted from duodenal biopsy samples and the expression of the iron transport genes was assessed by ribonuclease protection assays. Expression of DMT1 and Ireg1 was increased 1.5 to 3-fold in subjects with cirrhosis compared with iron-replete control subjects. The presence of cirrhosis per se and serum ferritin (SF) concentration were independent factors that influenced the expression of DMT1. However, only SF concentration was independently associated with Iregl expression. In cirrhosis, the expression of DMT1 and Iregl was not related to the severity of liver disease or cirrhosis type. There was no correlation between the duodenal expression of DMT1 and Iregl and the degree of hepatic siderosis. In conclusion, the presence of cirrhosis is an independent factor associated with increased expression of DMT1 but not Iregl. The mechanism by which cirrhosis mediates this change in DMT1 expression has yet to be determined. Increased expression of DMT1 may play an important role in the pathogenesis of cirrhosis-associated hepatic iron overload.
Resumo:
We associated clinical-pathological features of 142 OSCC with the expression pattern of GLUT1 and GLUT3 in order to estimate their prognostic value. Methods: Clinical-pathological features and overall survival data of 142 patients with Oral Squamous Cell Carcinoma (OSCC) were retrospectively reviewed from A. C. Camargo hospital records. A tissue microarray (TMA) was built for the immunohistochemical (IHC) analysis of GLUT 1 and GLUT 3. IHC results were evaluated according to the staining pattern and number of positive cells. Results: GLUT 1 was over expressed in 50.3% of OSSC cases showing membrane staining pattern. However, nuclear expression was observed in 49.7% of the analyzed cases. GLUT 3 over expression was detected in 21.1% of OSCC cases. The pattern of GLUT 1 expression showed significant association with alcohol consumption (p = 0.004). Positive cell membrane GLUT 3 protein expression was associated with advanced clinic-staging of tumours (p = 0.005) as well as with vascular embolization (p = 0.005). Positive expression of GLUT 3 was associated with unfavorable free-disease survival (p = 0.021). Conclusion: GLUT1 and GLUT3 protein expression evaluated by immunohistochemistry are, significantly, indicators of poor prognosis outcome in oral squamous cell carcinoma, probably due to the enhanced glycolytic metabolism of more aggressive neoplastic cells.
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade N ova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The occurrence of glucosuria in the absence of hyperglycemia is distinctive for renal glucosuria. SGLT2 mutations provoke familial renal glucosuria characterized by persistent glucosuria in the absence of any other renal tubular dysfunction. Renal glucosuria associated with others proximal tubular dysfunctions points to Fanconi syndrome. This generalized dysfunction of proximal tubule needs to be treated and may progress regarding its aetiology to chronic renal failure. The development and study of models of Fanconi syndrome has recently contributed to a better knowledge of the mechanisms implicated in the tubular transport of glucose and low-molecular-weight-proteins. This article reviews these recent developments.
Resumo:
Hypoksiaan liittyvät biologiset merkkiaineet leikkausta edeltävällä sädehoidolla tai kemosädehoidolla hoidetussa peräsuolisyövässä Peräsuolensyöpä on yleinen pahanlaatuinen kasvain. Leikkausta edeltävä sädehoito annetaan yleensä T3-T4-kasvaimille. Tutkimuksella pyrittiin selvittämään, voidaanko kasvaimen hapenpuutteeseen liittyvillä biologisilla merkkiaineilla arvioida peräsuolisyövän ennustetta leikkausta edeltävän sädehoidon tai kemosädehoidon jälkeen. Tällaisia merkkiaineita ovat hapenpuutteen vaikutuksesta aktivoituva HIF-1alfa hiilihappoanhydraasi IX (CA IX), sokerin kuljetukseen solussa osallistuva GLUT-1 sekä solun tukirankaproteiini ezrin. Tutkimukseen otettiin 178 potilasta, jotka olivat saaneet ennen leikkausta lyhyen (n=77) tai pitkän sädehoidon (n=10), pitkän sädehoidon ja solunsalpaajahoidon (n=37) tai ei mitään hoitoa (n=54). Lisäksi osalta leikkausta edeltävää sädehoitoa saaneelta potilaalta tutkittiin hoitoja edeltävät, diagnostiset näytteet (n=80). Tutkimuksessa käytettiin immunehistokemiallisia värjäysmenetelmiä. Kasvaimen regressiota (TRG) arvioitiin pitkän sädehoidon jälkeisistä näytteistä. Leikkausnäytteissä negatiivinen/heikko CA IX intensiteetti liittyi sekä pidempään tautispesifiseen (p=0.034) että tautivapaaseen elinaikaan (p=0.003) ja pitkän sädehoidon jälkeen HIF-1alfa-negatiivisuus pidempään tautispesifiseen (p=0.001) sekä negatiivinen/heikko GLUT-1 pidempään tautivapaaseen elinaikaan (p=0.066). Voimakas ezrin-ilmentymä diagnostisissa näytteissä liittyi lyhyempään tautivapaaseen ja tautispesifiseen (p=0.027 ja p=0.002) ennusteeseen. Monimuuttuja-analyysissä vahva CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti huonompaa tautivapaata ja tautispesifistä selviytymistä. Erinomainen TRG liittyi negatiiviseen/heikkoon CA IX- (p=0.057), ezrin- (p=0.012) ja GLUT-1 -ilmentymään (p=0.013) leikkausnäytteissä. Kun kaikki neljä merkkiainetta analysoitiin yhdessä monimuuttuja-analyysissä, CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti tautispesifistä elinaikaa. Voimakas CA IX-ilmentymä leikkausnäytteissä ja positiivinen HIF-1alfa- ja vahva GLUT-1-ilmentymä pitkän sädehoidon jälkeisissä leikkausnäytteissä sekä vahva ezrin-ilmentymä diagnostisissa näytteissä liittyivät epäsuotuisaan ennusteeseen. Monimuuttujaanalyysissä kohtalainen/voimakas CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti huonompaa tautivapaata ja tautispesifistä elinaikaa. CA IX on vahva biologinen merkkiaine peräsuolisyövässä.
Resumo:
Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.
Resumo:
Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.