997 resultados para Smoothed Particle Hydrodynamics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study of possibilities given by the developed Cellular Automata–Finite Element (CAFE) multi-scale model for prediction of the initiation and propagation of micro-shear bands and shear bands in metallic materials subjected to plastic deformation is described in the paper. Particular emphasis in defining the criterion for initiation of micro-shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of those phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi-scale model of strain localization. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the paper. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is presented in the paper as well. In this approach remeshing becomes possible and mesh distortion, which limits application of the CAFE method to simple deformation processes, is eliminated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulaA detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.tions are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We performed computer simulations of interstellar cloud-cloud collisions using the three-dimensional smoothed particle magnetohydrodynamics method. In order to study the role of the magnetic field on the process of collision-triggered fragmentation, we focused our attention on head-on supersonic collisions between two identical spherical molecular-clouds. Two extreme configurations of the magnetic field were adopted: parallel and perpendicular to the initial clouds motion. The initial magnetic field strength was approximately 12.0 muG. In the parallel case, much more of the collision debris were retained in the shocking region than in the non-magnetic case where gas escaped freely throughout the symmetry plane. Differently from the non-magnetic case, eddy-like vortices were formed. The regions of highest vorticity and the the regions of highest density are offset. We found clumps formation only in the parallel case, however, they were larger, hotter and less dense than in the analogous non-magnetic case. In the perpendicular case, the compressed field works as a magnetic wall, preventing a stronger compression of the colliding clouds. This last effect inhibits direct contact of the two clouds. In both cases, we found that the field lines show a chaotic aspect in large scales. Also, the field magnitude is considerably amplified in the shock layer. However, the field distribution is almost coherent in the higher density regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz and Asphaug, 1999). However, for many cases (e.g. initially partly or fully damaged targets and rubble-pile structures) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold (27, as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a Q(D)*:, which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger (Q(D)*; is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales less than or similar to 1 km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (less than or similar to 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt and Stewart, 2012). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to clarify the role played by the most commonly used viscous terms in simulating viscous laminar flows using the weakly compressible approach in the context of smooth particle hydrodynamics (WCSPH). To achieve this, Takeda et al. (Prog. Theor. Phys. 1994; 92(5):939–960), Morris et al. (J. Comput. Phys. 1997; 136:214–226) and Monaghan–Cleary–Gingold's (Appl. Math. Model. 1998; 22(12):981–993; Monthly Notices of the Royal Astronomical Society 2005; 365:199–213) viscous terms will be analysed, discussing their origins, structures and conservation properties. Their performance will be monitored with canonical flows of which related viscosity phenomena are well understood, and in which boundary effects are not relevant. Following the validation process of three previously published examples, two vortex flows of engineering importance have been studied. First, an isolated Lamb–Oseen vortex evolution where viscous effects are dominant and second, a pair of co-rotating vortices in which viscous effects are combined with transport phenomena. The corresponding SPH solutions have been compared to finite-element numerical solutions. The SPH viscosity model's behaviour in modelling the viscosity related effects for these canonical flows is adequate

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes an extension of methods used to predict the propagation of landslides having a long runout to smaller landslides with much shorter propagation distances. The method is based on: (1) a depth-integrated mathematical model including the coupling between the soil skeleton and the pore fluids, (2) suitable rheological models describing the relation between the stress and the rate of deformation tensors for fluidised soils and (3) a meshless numerical method, Smooth Particle Hydrodynamics, which separates the computational mesh (or set of computational nodes) from the mesh describing the terrain topography, which is of structured type – thus accelerating search operations. The proposed model is validated using two examples for which there are analytical solutions, and then it is applied to two short runout landslides which happened in Hong Kong in 1995, for which there is available information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Debris avalanches are complex phenomena due to the variety of mechanisms that control the failure stage and the avalanche formation. Regarding these issues, in the literature, either field evidence or qualitative interpretations can be found while few experimental laboratory tests and rare examples of geomechanical modelling are available for technical and/or scientific purposes. As a contribution to the topic, the paper firstly highlights as the problem can be analysed referring to a unique mathematical framework from which different modelling approaches can be derived based on limit equilibrium method (LEM), finite element method (FEM), or smooth particle hydrodynamics (SPH). Potentialities and limitations of these approaches are then tested for a large study area where huge debris avalanches affected shallow deposits of pyroclastic soils (Sarno-Quindici, Southern Italy). The numerical results show that LEM as well as uncoupled and coupled stress–strain FEM analyses are able to individuate the major triggering mechanisms. On the other hand, coupled SPH analyses outline the relevance of erosion phenomena, which can modify the kinematic features of debris avalanches in their source areas, i.e. velocity, propagation patterns and later spreading of the unstable mass. As a whole, the obtained results encourage the application of the introduced approaches to further analyse real cases in order to enhance the current capability to forecast the inception of these dangerous phenomena.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Event-by-event hydrodynamics (or hydrodynamics with fluctuating initial conditions) has been developed in the past few years. Here we discuss how it may help to understand the various structures observed in two-particle correlations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The usual particle emission scenario used in hydrodynamics presupposes that particles instantaneously stop interacting (freeze-out) once they reach some three dimensional surface. Another formalism has been developed recently where particle emission occurs continuously during the whole expansion of thermalized matter. Here we compare both mechanisms in a simplified hydrodynamical framework and show that they lead to a drastically different interpretation of data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.

An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.

The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.

With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.

The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.

A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.

The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most models of riverine eco-hydrology and biogeochemistry rely upon bulk parameterization of fluxes. However, the transport and retention of carbon and nutrients in headwater streams is strongly influenced by biofilms (surface-attached microbial communities), which results in strong feedbacks between stream hydrodynamics and biogeochemistry. Mechanistic understanding of the interactions between streambed biofilms and nutrient dynamics is lacking. Here we present experimental results linking microscale observations of biofilm community structure to the deposition and resuspension of clay-sized mineral particles in streams. Biofilms were grown in identical 3 m recirculating flumes over periods of 14-50 days. Fluorescent particles were introduced to each flume, and their deposition was traced over 30 minutes. Particle resuspension from the biofilms was then observed under an increased stream flow, mimicking a flood event. We quantified particle fluxes using flow cytometry and epifluorescence microscopy. We directly observed particle adhesion to the biofilm using a confocal laser scanning microscope. 3-D Optical Coherence Tomography was used to determine biofilm roughness, areal coverage and void space in each flume. These measurements allow us to link biofilm complexity to particle retention during both baseflow and floodflow. The results suggest that increased biofilm complexity favors deposition and retention of fine particles in streams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.