985 resultados para Small RNAs


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La diagnosi di neoplasia epiteliale maligna polmonare è legata tradizionalmente alla distinzione tra carcinoma a piccole cellule (small-cell lung cancer, SCLC) e carcinoma non-a piccole cellule del polmone (non-small-cell lung cancer, NSCLC). Nell’ambito del NSCLC attualmente è importante di-stinguere l’esatto istotipo (adenocarcinoma, carcinoma squamocellulare e carcinoma neuroendocrino) perchè l’approccio terapeutico cambia a seconda dell’istotipo del tumore e la chemioterapia si dimostra molto spesso inefficace. Attualmente alcuni nuovi farmaci a bersaglio molecolare per il gene EGFR, come Erlotinib e Gefitinib, sono utilizzati per i pazienti refrattari al trattamento chemioterapico tradizionale, che non hanno risposto a uno o più cicli di chemioterapia o che siano progrediti dopo questa. I test per la rilevazione di specifiche mutazioni nel gene EGFR permettono di utilizzare al meglio questi nuovi farmaci, applicandoli anche nella prima linea di trattamento sui pazienti che hanno una maggiore probabilità di risposta alla terapia. Sfortunatamente, non tutti i pazienti rispondono allo stesso modo quando trattati con farmaci anti-EGFR. Di conseguenza, l'individuazione di biomarcatori predittivi di risposta alla terapia sarebbe di notevole importanza per aumentare l'efficacia dei questi farmaci a target molecolare e trattare con farmaci diversi i pazienti che con elevata probabilità non risponderebbero ad essi. I miRNAs sono piccole molecole di RNA endogene, a singolo filamento di 20-22 nucleotidi che svolgono diverse funzioni, una delle più importanti è la regolazione dell’espressione genica. I miRNAs possono determinare una repressione dell'espressione genica in due modi: 1-legandosi a sequenze target di mRNA, causando così un silenziamento del gene (mancata traduzione in proteina), 2- causando la degradazione dello specifico mRNA. Lo scopo della ricerca era di individuare biomarcatori capaci di identificare precocemente i soggetti in grado di rispondere alla terapia con Erlotinib, aumentando così l'efficacia del farmaco ed evitan-do/riducendo possibili fenomeni di tossicità e il trattamento di pazienti che probabilmente non ri-sponderebbero alla terapia offrendo loro altre opzioni prima possibile. In particolare, il lavoro si è fo-calizzato sul determinare se esistesse una correlazione tra la risposta all'Erlotinib ed i livelli di espressione di miRNAs coinvolti nella via di segnalazione di EGFR in campioni di NSCLC prima dell’inizio della terapia. Sono stati identificati 7 microRNA coinvolti nel pathway di EGFR: miR-7, -21, 128b, 133a, -133b, 146a, 146b. Sono stati analizzati i livelli di espressione dei miRNA mediante Real-Time q-PCR in campioni di NSCLC in una coorte di pazienti con NSCLC metastatico trattati con Erlotinib dal 1° gennaio 2009 al 31 dicembre 2014 in 2°-3° linea dopo fallimento di almeno un ciclo di chemioterapia. I pazienti sottoposti a trattamento con erlotinib per almeno 6 mesi senza presentare progressione alla malattia sono stati definiti “responders” (n=8), gli altri “non-responders” (n=25). I risultati hanno mostrato che miR-7, -133b e -146a potrebbero essere coinvolti nella risposta al trat-tamento con Erlotinib. Le indagini funzionali sono state quindi concentrate su miR-133b, che ha mo-strato la maggiore espressione differenziale tra i due gruppi di pazienti. E 'stata quindi studiata la capacità di miR-133b di regolare l'espressione di EGFR in due linee di cellule del cancro del polmone (A549 e H1299). Sono stati determinati gli effetti di miR-133b sulla crescita cellulare. E’ stato anche analizzato il rapporto tra miR-133b e sensibilità a Erlotinib nelle cellule NSCLC. L'aumento di espressione di miR-133b ha portato ad una down-regolazione del recettore di EGF e del pathway di EGFR relativo alla linea cellulare A549. La linea cellulare H1299 era meno sensibili al miR-133b up-regulation, probabilmente a causa dell'esistenza di possibili meccanismi di resistenza e/o di com-pensazione. La combinazione di miR-133b ed Erlotinib ha aumentato l'efficacia del trattamento solo nella linea cellulare A549. Nel complesso, questi risultati indicano che miR-133b potrebbe aumentare / ripristinare la sensibilità di Erlotinib in una frazione di pazienti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past few years have brought about a fundamental change in our understanding and definition of the RNA world and its role in the functional and regulatory architecture of the cell. The discovery of small RNAs that regulate many aspects of differentiation and development have joined the already known non-coding RNAs that are involved in chromosome dosage compensation, imprinting, and other functions to become key players in regulating the flow of genetic information. It is also evident that there are tens or even hundreds of thousands of other non-coding RNAs that are transcribed from the mammalian genome, as well as many other yet-to-be-discovered small regulatory RNAs. In the recent symposium RNA: Networks & Imaging held in Heidelberg, the dual roles of RNA as a messenger and a regulator in the flow of genetic information were discussed and new molecular genetic and imaging methods to study RNA presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome editing is becoming an important biotechnological tool for gene function analysis and crop improvement, being the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9) system the most widely used. The natural CRISPR/Cas9 system has been reduced to two components: a single-guide RNA (sgRNA) for target recognition via RNA-DNA base pairing, which is commonly expressed using a promoter for small-RNAs (U6 promoter), and the Cas9 endonuclease for DNA cleavage (1). To validate the CRISPR/Cas9 system in strawberry plants, we designed two sgRNAs directed against the floral homeotic gene APETALA3 (sgRNA-AP3#1 and sgRNA-AP3#2). This gene was selected because ap3 mutations induce clear developmental phenotypes in which petals and stamens are missing or partially converted to sepals and carpels respectively (2). In this work, we used two different U6 promoters to drive the sgRNA-AP3s expression: AtU6-26 from Arabidopsis (4), and a U6 promoter from Fragaria vesca (FvU6) (this work). We also tested two different coding sequences of Cas9: a human- (hSpCas9) (3) and a plant-codon optimized (pSpCas9) (this work). Transient expression experiments using both CRISPR/Cas9 systems (AtU6-26:sgRNA-AP3#1_35S:hSpCas9_AtU6-26:sgRNA-AP3#2 and FvU6:sgRNA-AP3#1_35S:pSpCas9_FvU6:sgRNA-AP3#2) were performed infiltrating Agrobacterium tumefaciens into F. vesca fruits. PCR amplification and sequencing analyses across the target sites showed a deletion of 188-189 bp corresponding to the region comprised between the two cutting sites of Cas9, confirming that the CRISPR/Cas9 system is functional in F. vesca. Remarkably, the two systems showed different mutagenic efficiency that could be related to differences in expression of the U6 promoters as well as differences in the Cas9 transcripts stability and translation. Stable transformants for both F. vesca (2n) and Fragaria X anannassa (8n) are currently being established to test whether is possible to obtain heritable homozygous mutants derived from CRISPR/Cas9 strategies in strawberry. Thus, our work offers a promising tool for genome editing and gene functional analysis in strawberry. This tool might represent a more efficient alternative to the sometimes inefficient RNAi silencing methods commonly used in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term "mitokines" refers to signals derived from mitochondria that have an impact on other cells or tissues (Durieux et al., 2011). Rather than being simply a set of DNA composed by 37 genes, the mitochondrial DNA (mtDNA) is quite complex and includes small RNAs (Mercer et al., 2011). Mitochondrial-derived peptides (MDPs) are encoded by functional short open reading frames (sORFs) in the mtDNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Obesity is not a new disease, with roots that can be traced back to 400 BC. However, with the staggering increase in individuals that are overweight and obese since the 1980s, now over a quarter of individuals in Europe and the Americas are classed as obese. This presents a global health problem that needs to be addressed with novel therapies. It is now well accepted that obesity is a chronic, low-grade inflammatory condition that could predispose individuals to a number of comorbidities. Obesity is associated with cardiovascular diseases (CVDs) and type 2 diabetes (T2D) as part of “the metabolic syndrome,” and as first identified by Dr Vauge, central distribution of white adipose tissue (WAT) is an important risk factor in the development of these diseases. Subsequently, visceral WAT (vWAT) was shown to be an important factor in this association with CVDs and T2D, and increasing inflammation. As the obese WAT expands, mainly through hypertrophy, there is an increase in inflammation that recruits numerous immune cells to the tissue that further exacerbate this inflammation, causing local and systemic inflammatory and metabolic effects. One of the main types of immune cell involved in this pathogenic process is pro-inflammatory M1 adipose tissue macrophages (ATMs). MicroRNAs (miRNAs) are a species of small RNAs that post-transcriptionally regulate gene expression by targeting gene mRNA, causing its degradation or translational repression. These miRNAs are promiscuous, regulating numerous genes and pathways involved in a disease, making them useful therapeutic targets, but also difficult to study. miR-34a has been shown to increase in the serum, liver, pancreas, and subcutaneous (sc)WAT of patients with obesity, non- alcoholic fatty liver disease (NAFLD) and T2D. Additionally, miR-34a has been shown to regulate a number of metabolic and inflammatory genes in numerous cell types, including those in macrophages. However, the role of miR-34a in regulating vWAT metabolism and inflammation is poorly understood. Hypothesis: miR-34a is dysregulated in the adipose tissue during obesity, causing dysregulation of metabolic and inflammatory pathways in adipocytes and ATMs that contribute to adipose inflammation and obesity’s comorbidities, particularly T2D. Method/Results: The role of miR-34a in adipose inflammation was investigated using a murine miR-34a-/- diet-induced obesity model, and primary in vitro models of adipocyte differentiation and inflammatory bone marrow-derived macrophages (BMDMs). miR-34a was shown to be ubiquitously expressed throughout the murine epididymal (e)WAT of obese high-fat diet (HFD)-fed WT mice and ob/ob mice, as well as omental WAT from patients with obesity. Additionally, miR-34a transcripts were increased in the liver and brown adipose tissue (BAT) of ob/ob and HFD-fed WT mice, compared to WT controls. When miR-34a-/- mice were fed HFD ad libitum for 24 weeks they were significantly heavier than their WT counterparts by the end of the study. Ex vivo examinations showed that miR-34a-/- eWAT had a smaller adipocyte area on chow, which significantly increased to WT levels during HFD-feeding. Additionally, miR-34a-/- eWAT showed basal increases in cholesterol and fatty acid metabolism genes Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a-/- iBAT showed basal reductions in Cebpα and Cebpβ, with increased Pgc1α expression during HFD- feeding. The miR-34a-/- liver additionally showed increased basal transcript expression of Pgc1α, suggesting miR-34a may broadly regulate PGC1α. Accompanying the ex vivo changes in cholesterol and fatty acid metabolism genes, in vitro miR-34a-/- white adipocytes showed increased lipid content. An F4/80high macrophage population was identified in HFD-fed miR-34a-/- eWAT, with increased Il-10 transcripts and serum IL-5 protein. Following these ex vivo observations, BMDMs from WT mice upregulated miR-34a expression in response to TNFα stimulation. Additionally, miR-34a-/- BMDMs showed an ablated CXCL1 response to TNFα. Conclusion: These findings suggest miR-34a has a multi-factorial role in controlling a susceptibility to obesity, by regulating inflammatory and metabolic pathways, potentially through regulation of PGC1α.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small nuclear RNAs (snRNAs) are important factors in the functioning of eukaryotic cells that form several small complexes with proteins; these ribonucleoprotein particles (U snRNPs) have an essential role in the pre-mRNA processing, particularly in splicing, catalyzed by spliceosomes, large RNA-protein complexes composed of various snRNPs. Even though they are well defined in mammals, snRNPs are still not totally characterized in certain trypanosomatids as Trypanosoma cruzi. For this reason we subjected snRNAs (U2, U4, U5, and U6) from T. cruzi epimastigotes to molecular characterization by polymerase chain reaction (PCR) and reverse transcription-PCR. These amplified sequences were cloned, sequenced, and compared with those other of trypanosomatids. Among these snRNAs, U5 was less conserved and U6 the most conserved. Their respective secondary structures were predicted and compared with known T. brucei structures. In addition, the copy number of each snRNA in the T. cruzi genome was characterized by Southern blotting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNai (TM)). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80 degrees C. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAi (TM) was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of alternative splicing for the diversity of the proteome and the large number of genetic diseases that are due to splicing defects call for methods to modulate alternative splicing decisions. Although splicing can be modulated by antisense oligonucleotides, this approach is confronted with problems of efficient delivery and the need for repeated administrations of large amounts of the oligonucleotides. Therefore we have developed methods allowing us to modulate splicing with the help of modified derivatives of the U7 small nuclear RNA involved in histone RNA 3' end processing. Its nuclear accumulation as a stable ribonucleoprotein particle makes U7 snRNA especially useful for this purpose. In particular, U7 derivatives containing two tandem antisense sequences directed against targets upstream and downstream of an exon can induce the efficient and specific skipping of that exon. U7 expression cassettes have been successfully introduced into a great number of cell lines, primary cells or tissues with the help of lentiviral and adeno-associated viral vectors. Examples of these therapeutic strategies in the fields of β-thalassemia, Duchenne muscular dytrophy and HIV/AIDS are discussed.