795 resultados para Slot-based task-splitting algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brazilian government has convinced the world that ethanol deriving from sugar cane is a promissory means of sustainable fuel for vehicles. There is a great growth of ex vehicles , i.e, run both by ethanol and gasoline, due to competent automotive industries and e cient alcohol production technology. In 2009 and 2010 the ethanol production was 25.7 billion liters and 53.8% of sugar cane production was destined to alcohol production. Nevertheless, the sugar production also derived from sugar cane should increase in 2011. Brazil produced 33 million tons of sugar in the last harvest. With sugar cane on the rise production is arising new environmental problems. The harvest using mechanized cut besides improving the logistic transportation system leaves the generating residue in the eld. This residue is a mixture of straw, leavings and scrap of sugar cane named sugar cane crop residue and corresponds to 30% of biomass and can be burned and produce electricity by cogeneration. But the transport the sugar cane crop from the eld is expensive due costs involved in the transport system. This work aims to propose a formulation for the bales collecting problem from sugar cane eld to mill that minimize the costs involved in the transport system. The computational tests use the C++ language and an algorithm based on genetic algorithms techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis adresses the problem of localization, and analyzes its crucial aspects, within the context of cooperative WSNs. The three main issues discussed in the following are: network synchronization, position estimate and tracking. Time synchronization is a fundamental requirement for every network. In this context, a new approach based on the estimation theory is proposed to evaluate the ultimate performance limit in network time synchronization. In particular the lower bound on the variance of the average synchronization error in a fully connected network is derived by taking into account the statistical characterization of the Message Delivering Time (MDT) . Sensor network localization algorithms estimate the locations of sensors with initially unknown location information by using knowledge of the absolute positions of a few sensors and inter-sensor measurements such as distance and bearing measurements. Concerning this issue, i.e. the position estimate problem, two main contributions are given. The first is a new Semidefinite Programming (SDP) framework to analyze and solve the problem of flip-ambiguity that afflicts range-based network localization algorithms with incomplete ranging information. The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is studied, then with this information a new SDP formulation of the localization problem is built. Finally a flip-ambiguity-robust network localization algorithm is derived and its performance is studied by Monte-Carlo simulations. The second contribution in the field of position estimate is about multihop networks. A multihop network is a network with a low degree of connectivity, in which couples of given any nodes, in order to communicate, they have to rely on one or more intermediate nodes (hops). Two new distance-based source localization algorithms, highly robust to distance overestimates, typically present in multihop networks, are presented and studied. The last point of this thesis discuss a new low-complexity tracking algorithm, inspired by the Fano’s sequential decoding algorithm for the position tracking of a user in a WLAN-based indoor localization system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La ricerca proposta si pone l’obiettivo di definire e sperimentare un metodo per un’articolata e sistematica lettura del territorio rurale, che, oltre ad ampliare la conoscenza del territorio, sia di supporto ai processi di pianificazione paesaggistici ed urbanistici e all’attuazione delle politiche agricole e di sviluppo rurale. Un’approfondita disamina dello stato dell’arte riguardante l’evoluzione del processo di urbanizzazione e le conseguenze dello stesso in Italia e in Europa, oltre che del quadro delle politiche territoriali locali nell’ambito del tema specifico dello spazio rurale e periurbano, hanno reso possibile, insieme a una dettagliata analisi delle principali metodologie di analisi territoriale presenti in letteratura, la determinazione del concept alla base della ricerca condotta. E’ stata sviluppata e testata una metodologia multicriteriale e multilivello per la lettura del territorio rurale sviluppata in ambiente GIS, che si avvale di algoritmi di clustering (quale l’algoritmo IsoCluster) e classificazione a massima verosimiglianza, focalizzando l’attenzione sugli spazi agricoli periurbani. Tale metodo si incentra sulla descrizione del territorio attraverso la lettura di diverse componenti dello stesso, quali quelle agro-ambientali e socio-economiche, ed opera una sintesi avvalendosi di una chiave interpretativa messa a punto allo scopo, l’Impronta Agroambientale (Agro-environmental Footprint - AEF), che si propone di quantificare il potenziale impatto degli spazi rurali sul sistema urbano. In particolare obiettivo di tale strumento è l’identificazione nel territorio extra-urbano di ambiti omogenei per caratteristiche attraverso una lettura del territorio a differenti scale (da quella territoriale a quella aziendale) al fine di giungere ad una sua classificazione e quindi alla definizione delle aree classificabili come “agricole periurbane”. La tesi propone la presentazione dell’architettura complessiva della metodologia e la descrizione dei livelli di analisi che la compongono oltre che la successiva sperimentazione e validazione della stessa attraverso un caso studio rappresentativo posto nella Pianura Padana (Italia).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Ausheilung von Infektionen mit Leishmania major liegt die Sekretion von IFN- von sowohl CD4+ als auch CD8+ T Zellen zugrunde.rnAktuell konnte in der Literatur nur ein Epitop aus dem parasitären LACK Protein für eine effektive CD4+ T Zell-vermittelte Immunantwort beschrieben werden. Das Ziel der vorliegenden Arbeit bestand daher darin, mögliche MHC I abhängige CD8+ T Zell Antworten zu untersuchen. rnFür diesen Ansatz wurde als erstes der Effekt einer Vakzinierung mit LACK Protein fusioniert an die Protein-Transduktionsdomäne des HIV-1 (TAT) analysiert. Die Effektivität von TAT-LACK gegenüber CD8+ T Zellen wurde mittels in vivo Protein-Vakzinierung von resistenten C57BL/6 Mäusen in Depletions-Experimenten gezeigt.rnDie Prozessierung von Proteinen vor der Präsentation immunogener Peptide gegenüber T Zellen ist unbedingt erforderlich. Daher wurde in dieser Arbeit die Rolle des IFN--induzierbaren Immunoproteasoms bei der Prozessierung von parasitären Proteinen und Präsentation von Peptiden gebunden an MHC I Moleküle durch in vivo und in vitro Experimente untersucht. Es konnte in dieser Arbeit eine Immunoproteasom-unabhängige Prozessierung aufgezeigt werden.rnWeiterhin wurde Parasitenlysat (SLA) von sowohl Promastigoten als auch Amastigoten fraktioniert. In weiterführenden Experimenten können diese Fraktionen auf immunodominante Proteine/Peptide hin untersucht werden. rnLetztlich wurden Epitop-Vorhersagen für CD8+ T Zellen mittels computergestützer Software von beiden parasitären Lebensformen durchgeführt. 300 dieser Epitope wurden synthetisiert und werden in weiterführenden Experimenten zur Charakterisierung immunogener Eigenschaften weiter verwendet. rnIn ihrer Gesamtheit trägt die vorliegende Arbeit wesentlich zum Verständnis über die komplexen Mechanismen der Prozessierung und letztendlich zur Identifikation von möglichen CD8+ T Zell Epitopen bei. Ein detailiertes Verständnis der Prozessierung von CD8+ T Zell Epitopen von Leishmania major über den MHC Klasse I Weg ist von höchster Bedeutung. Die Charakterisierung sowie die Identifikation dieser Peptide wird einen maßgeblichen Einfluss auf die weiteren Entwicklungen von Vakzinen gegen diesen bedeutenden human-pathogenen Parasiten mit sich bringen. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of algorithms, which allows a computer to determine the answers of simulated patients during pure tone and speech audiometry, is presented. Based on these algorithms, a computer program for training in audiometry was written and found to be useful for teaching purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Emotional processing in essential hypertension beyond self-report questionnaire has hardly been investigated. The aim of this study is to examine associations between hypertension status and recognition of facial affect. Methods: 25 healthy, non-smoking, medication-free men including 13 hypertensive subjects aged between 20 and 65 years completed a computer-based task in order to examine sensitivity of recognition of facial affect. Neutral faces gradually changed to a specific emotion in a pseudo-continuous manner. Slides of the six basic emotions (fear, sadness, disgust, happiness, anger, surprise) were chosen from the „NimStim Set“. Pictures of three female and three male faces were electronically morphed in 1% steps of intensity from 0% to 100% (36 sets of faces with 100 pictures each). Each picture of a set was presented for one second, ranging from 0% to 100% of intensity. Participants were instructed to press a stop button as soon as they recognized the expression of the face. After stopping a forced choice between the six basic emotions was required. As dependent variables, we recorded the emotion intensity at which the presentation was stopped and the number of errors (error rate). Recognition sensitivity was calculated as emotion intensity of correctly identified emotions. Results: Mean arterial pressure was associated with a significantly increased recognition sensitivity of facial affect for the emotion anger (ß = - .43, p = 0.03*, Δ R2= .110). There was no association with the emotions fear, sadness, disgust, happiness, and surprise (p’s > .0.41). Mean arterial pressure did not relate to the mean number of errors for any of the facial emotions. Conclusions: Our findings suggest that an increased blood pressure is associated with increased recognition sensitivity of facial affect for the emotion anger, if a face shows anger. Hypertensives perceive facial anger expression faster than normotensives, if anger is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two of the main issues in wireless industrial Internet of Things applications are interoperability and network lifetime. In this work we extend a semantic interoperability platform and introduce an application-layer sleepy nodes protocol that can leverage on information stored in semantic repositories. We propose an integration platform for managing the sleep states and an application layer protocol based upon the Constraint Application Layer protocol. We evaluate our system on windowing based task allocation strategies, aiming for lower overall energy consumption that results in higher network lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Artificial Neural Networks still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning ANN parameters. In recent years the use of hybrid technologies, combining Artificial Neural Networks and Genetic Algorithms, has been utilized to. In this work, several ANN topologies were trained and tested using Artificial Neural Networks and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a proposal for a recognition model for the appraisal value of sentences. It is based on splitting the text into independent sentences (full stops) and then analysing the appraisal elements contained in each sentence according to the previous value in the appraisal lexicon. In this lexicon, positive words are assigned a positive coefficient (+1) and negative words a negative coefficient (-1). We take into account word such as ?too?, ?little? (when it is not ?a bit?), ?less?, and ?nothing? than can modify the polarity degree of lexical unit when appear in the nearby environment. If any of these elements are present, then the previous coefficient will be multiplied by (-1), that is, they will change their sign. Our results show a nearly theoretical effectiveness of 90%, despite not achieving the recognition (or misrecognition) of implicit elements. These elements represent approximately 4% of the total of sentences analysed for appraisal and include the errors in the recognition of coordinated sentences. On the one hand, we found that 3.6 % of the sentences could not be recognized because they use different connectors than those included in the model; on the other hand, we found that in 8.6% of the sentences despite using some of the described connectors could not be applied the rules we have developed. The percentage relative to the whole group of appraisal sentences in the corpus was approximately of 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um modelo de otimização multiobjetivo aplicado ao projeto de concepção de submarinos convencionais (i.e. de propulsão dieselelétrica). Um modelo de síntese que permite a estimativa de pesos, volume, velocidade, carga elétrica e outras características de interesse para a o projeto de concepção é formulado. O modelo de síntese é integrado a um modelo de otimização multiobjetivo baseado em algoritmos genéticos (especificamente, o algoritmo NSGA II). A otimização multiobjetivo consiste na maximização da efetividade militar do submarino e na minimização de seu custo. A efetividade militar do submarino é representada por uma Medida Geral de Efetividade (OMOE) estabelecida por meio do Processo Analítico Hierárquico (AHP). O Custo Básico de Construção (BCC) do submarino é estimado a partir dos seus grupos de peso. Ao fim do processo de otimização, é estabelecida uma Fronteira de Pareto composta por soluções não dominadas. Uma dessas soluções é selecionada para refinamento preliminar e os resultados são discutidos. Subsidiariamente, esta dissertação apresenta discussão sucinta sobre aspectos históricos e operativos relacionados a submarinos, bem como sobre sua metodologia de projeto. Alguns conceitos de Arquitetura Naval, aplicada ao projeto dessas embarcações, são também abordados.