191 resultados para Slam
Resumo:
Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.
Resumo:
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.
Resumo:
RatSLAM is a biologically-inspired visual SLAM and navigation system that has been shown to be effective indoors and outdoors on real robots. The spatial representation at the core of RatSLAM, the experience map, forms in a distributed fashion as the robot learns the environment. The activity in RatSLAM’s experience map possesses some geometric properties, but still does not represent the world in a human readable form. A new system, dubbed RatChat, has been introduced to enable meaningful communication with the robot. The intention is to use the “language games” paradigm to build spatial concepts that can be used as the basis for communication. This paper describes the first step in the language game experiments, showing the potential for meaningful categorization of the spatial representations in RatSLAM.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
This paper describes the current state of RatSLAM, a Simultaneous Localisation and Mapping (SLAM) system based on models of the rodent hippocampus. RatSLAM uses a competitive attractor network to fuse visual and odometry information. Energy packets in the network represent pose hypotheses, which are updated by odometry and can be enhanced or inhibited by visual input. This paper shows the effectiveness of the system in real robot tests in unmodified indoor environments using a learning vision system. Results are shown for two test environments; a large corridor loop and the complete floor of an office building.
Resumo:
RatSLAM is a system for vision-based Simultaneous Localisation and Mapping (SLAM) inspired by models of the rodent hippocampus. The system can produce stable representations of large complex environments during robot experiments in both indoor and outdoor environments. These representations are both topological and metric in nature, and can involve multiple representations of the same place as well as discontinuities. In this paper we describe a new technique known as experience mapping that can be used online with the RatSLAM system to produce world representations known as experience maps. These maps group together multiple place representations and are spatially continuous. A number of experiments have been conducted in simulation and a real world office environment. These experiments demonstrate the high degree to which experience maps are representative of the spatial arrangement of the environment.
Resumo:
RatSLAM is a vision-based SLAM system based on extended models of the rodent hippocampus. RatSLAM creates environment representations that can be processed by the experience mapping algorithm to produce maps suitable for goal recall. The experience mapping algorithm also allows RatSLAM to map environments many times larger than could be achieved with a one to one correspondence between the map and environment, by reusing the RatSLAM maps to represent multiple sections of the environment. This paper describes experiments investigating the effects of the environment-representation size ratio and visual ambiguity on mapping and goal navigation performance. The experiments demonstrate that system performance is weakly dependent on either parameter in isolation, but strongly dependent on their joint values.
Resumo:
This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false positive matches. By combining these algorithms using a mapping between appearance and pose space, both false positives and false negatives generated by FAB-MAP are significantly reduced during outdoor mapping using a forward-facing camera. The hybrid FAB-MAP-RatSLAM system developed demonstrates the potential for successful SLAM over large periods of time.
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.
Resumo:
The implementation of a robotic security solution generally requires one algorithm to route the robot around the environment and another algorithm to perform anomaly detection. Solutions to the routing problem require the robot to have a good estimate of its own pose. We present a novel security system that uses metrics generated by the localisation algorithm to perform adaptive anomaly detection. The localisation algorithm is a vision-based SLAM solution called RatSLAM, based on mechanisms within the hippocampus. The anomaly detection algorithm is based on the mechanisms used by the immune system to identify threats to the body. The system is explored using data gathered within an unmodified office environment. It is shown that the algorithm successfully reacts to the presence of people and objects in areas where they are not usually present and is tolerised against the presence of people in environments that are usually dynamic.
Resumo:
The RatSLAM system can perform vision based SLAM using a computational model of the rodent hippocampus. When the number of pose cells used to represent space in RatSLAM is reduced, artifacts are introduced that hinder its use for goal directed navigation. This paper describes a new component for the RatSLAM system called an experience map, which provides a coherent representation for goal directed navigation. Results are presented for two sets of real world experiments, including comparison with the original goal memory system's performance in the same environment. Preliminary results are also presented demonstrating the ability of the experience map to adapt to simple short term changes in the environment.
Resumo:
RatSLAM is a system for vision based Simultaneous Localization and Mapping (SLAM) that has been shown to be capable of building stable representations of real world environments. In this paper we describe a method for using RatSLAM representations as the basis for navigation to designated goal locations. The method uses a new component, goal memory, to learn the temporal gradient between places. Paths are recalled or inferred from the goal memory by following the temporal gradient from the robot’s current position to the goal location. Experimental results have been gathered in a combined office and laboratory environment using a Pioneer robot. The experiments show that the robot can perform vision based SLAM on-line and in real time, and then use those representations immediately to navigate directly to designated goal locations.
Resumo:
This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.
Resumo:
In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube half way up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.
Resumo:
In this paper, we present recent results with using range from radio for mobile robot localization. In previous work we have shown how range readings from radio tags placed in the environment can be used to localize a robot. We have extended previous work to consider robustness. Specifically, we are interested in the case where range readings are very noisy and available intermittently. Also, we consider the case where the location of the radio tags is not known at all ahead of time and must be solved for simultaneously along with the position of the moving robot. We present results from a mobile robot that is equipped with GPS for ground truth, operating over several km.