534 resultados para Ski alpin
Resumo:
William Wachtel
Resumo:
William Wachtel
Resumo:
William Wachtel
Resumo:
Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^
Resumo:
Telegramas: "telg: FERRER"
Resumo:
Transforming growth factor β (TGF-β) regulates a variety of physiologic processes, including growth inhibition, differentiation, and induction of apoptosis. Some TGF-β-initiated signals are conveyed through Smad3; TGF-β binding to its receptors induces phosphorylation of Smad3, which then migrates to the nucleus where it functions as a transcription factor. We describe here the association of Smad3 with the nuclear protooncogene protein SnoN. Overexpression of SnoN represses transcriptional activation by Smad3. Activation of TGF-β signaling leads to rapid degradation of SnoN and, to a lesser extent, of the related Ski protein, and this degradation is likely mediated by cellular proteasomes. These results demonstrate the existence of a cascade of the TGF-β signaling pathway, which, upon TGF-β stimulation, leads to the destruction of protooncoproteins that antagonize the activation of the TGF-β signaling.
Resumo:
Translation of Les grands poètes romantiques de la Pologne; essais de littérature et d'histoire: Mickiewicz, Slowacki, Krasinski.
Resumo:
Mode of access: Internet.
Resumo:
Romanized record.