933 resultados para Skeletal-muscle Mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of lysine amino acid supplementation on the growth characteristics and morphological pattern of skeletal muscle tissue in Nile tilapia Oreochromis niloticus larvae was evaluated. There were four treatments (T) with increasing levels of lysine supplement (T1 = 0.0%: T2 =1.1%; T3 = 1.7%; T4 = 4.0%) and one treatment with a commercial diet (T5). In all treatments, morphological and histochemical muscle tissue analyses were similar. Two distinct layers were identified: a superficial red layer, more developed in the lateral line region, formed by fibres with intense to moderate NADH-TR reaction and strong acid-stable mATPase activity, and a deep white one, most of the Muscle mass, formed by fibres with weak NADH-TR reaction and strong alkali-stable mATPase activity. There was an intermediate layer between these two layers with fibres exhibiting either weak acid-stable or acid-labile mATPase activity. Body mass increase was significantly higher in T5 than in the lysine treatments (T1-T4). There was no difference in number and diameters of muscle fibres between lysine treatments. In T5, muscle fibre diameter and number were higher. The frequency of red fibres with diameters <= 8 mu m was higher in the lysine treatments, and with diameters between 16 and 24 mu m, was higher in T5. Most white fibre diameters in T5 were significantly larger than 24 mu m and in T1-T4 were between 8 and 16 mu m. Cell proliferation was higher in the lysine treatments and muscle growth in T5 was mainly by fibre hypertrophy. (c) 2005 the Fisheries Society of the British

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study evaluated the effects of growth hormone (GH) on morphology and myogenic regulatory factors (MRF) gene expression in skeletal muscle of rats with ascending aortic stenosis (AAS) induced chronic heart failure.Design: Male 90-100 g Wistar rats were subjected to thoracotomy. AAS was created by placing a stainless-steel clip on the ascending aorta. Twenty five weeks after surgery, rats were treated with daily subcutaneous injections of recombinant human GH (2 mg/kg/day; AAS-GH group) or saline (AAS group) for 14 days. Sham-operated animals served as controls. Left ventricular (LV) function was assessed before and after treatment. IGF-1 serum levels were measured by ELISA. After anesthesia, soleus muscle was frozen in liquid nitrogen. Histological sections were stained with HE and picrosirius red to calculate muscle fiber cross-sectional area and collagen fractional area, respectively. MRF myogenin and MyoD expression was analyzed by reverse transcription PCR.Results: Body weight was similar between groups. AAS and AAS-GH groups presented dilated left atrium, left ventricular (LV) hypertrophy (LV mass index: Control 1.90 +/- 0.15; AAS 3.11 +/- 0.44; AAS-GH 2.94 +/- 0.47 g/kg; p < 0.05 AAS and AAS-GH vs. Control), and reduced LV posterior wall shortening velocity. Soleus muscle fiber area was significantly lower in AAS than in Control and AAS-GH groups; there was no difference between AAS-GH and Control groups. Collagen fractional area was significantly higher in MS than Control; AAS-GH did not differ from both Control and AAS groups. Serum IGF-1 levels decreased in AAS compared to Control. MyoD mRNA was significantly higher in AAS-GH than AAS; there was no difference between AAS-GH and Control groups. Myogenin mRNA levels were similar between groups.Conclusion: In rats with aortic stenosis-induced heart failure, growth hormone administration increases MyoD gene expression above non-treated animal levels, preserves muscular trophism and attenuates interstitial fibrosis. These results suggest that growth hormone may have a potential role as an adjuvant therapy for chronic heart failure. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal venoms have been valuable sources for development of new drugs and important tools to understand cellular functioning in health and disease. The venom of Polybia paulista, a neotropical social wasp belonging to the subfamily Polistinae, has been sampled by headspace solid phase microextraction and analyzed by gas chromatography-mass spectrometry. Recent study has shown that mastoparan, a major basic peptide isolated from the venom, reproduces the myotoxic effect of the whole venom. In this study, Polybia-MPII mastoparan was synthesized and studies using transmission electron microscopy were carried out in mice tibial anterior muscle to identify the subcellular targets of its myotoxic action. The effects were followed at 3 and 24 h, 3, 7, and 21 days after mastoparan (0.25 mu g/mu L) intramuscular injection. The peptide caused disruption of the sarcolemma and collapse of myofibril arrangement in myofibers. As a consequence, fibers presented heteromorphic amorphous masses of agglutinated myofilaments very often intermingled with denuded sarcoplasmic areas sometimes only surrounded by a persistent basal lamina. To a lesser extent, a number of fibers apparently did not present sarcolemma rupture but instead appeared with multiple small vacuoles. The results showed that sarcolemma, sarcoplasmic reticulum (SR), and mitochondria were the main targets for mastoparan. In addition, a number of fibers showed apoptotic-like nuclei suggesting that the peptide causes death both by necrosis and apoptosis. This study presents a hitherto unexplored view of the effects of mastoparan in skeletal muscle and contributes to discuss how the known pharmacology of the peptide is reflected in the sarcolemma, SR, mitochondria, and nucleus of muscle fibers, apparently its subcellular targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle growth in the pirarucu (Arapaima gigas) is highly interesting to fish farmers because it provides information about how the mechanism in muscle mass increase, characteristic of the species, is regulated. Pirarucu has specific muscle growth that highlights the species's significance and commercial value. Current research evaluates the morphology and the growth-related gene expression in the red and white skeletal muscles of the pirarucu. Muscle samples were collected from the lateral anterior region and frozen in liquid nitrogen. Histological sections were performed and stained by HE for morphological analysis. Red and white muscle samples were used to determine MyoD, myogenin, and myostatin genes expression by Real-time Polymerase Chain Reaction. Although MyoD and myogenin were not statistically different in the two types of muscles, myostatin was significantly higher in the white rather than in the red muscle. Results show the muscle growth characteristics of the species and may be helpful for improving aquaculture management programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Human skeletal muscle expresses leptin receptor mRNA; however, it remains unknown whether leptin receptors (OB-R) are also expressed at the protein level. Fourteen healthy men (age = 33.1 +/- 2.0 yr, height = 175.9 +/- 1.7 cm, body mass = 81.2 +/- 3.8 kg, body fat = 22.5 +/- 1.9%; means +/- SE) participated in this investigation. The expression of OB-R protein was determined in skeletal muscle, subcutaneous adipose tissue, and hypothalamus using a polyclonal rabbit anti-human leptin receptor. Three bands with a molecular mass close to 170, 128, and 98 kDa were identified by Western blot with the anti-OB-R antibody. All three bands were identified in skeletal muscle: the 98-kDa and 170-kDa bands were detected in hypothalamus, and the 98-kDa and 128-kDa bands were detected in thigh subcutaneous adipose tissue. The 128-kDa isoform was not detected in four subjects, whereas in the rest its occurrence was fully explained by the presence of intermuscular adipose tissue, as demonstrated using an anti-perilipin A antibody. No relationship was observed between the basal concentration of leptin in serum and the 170-kDa band density. In conclusion, a long isoform of the leptin receptor with a molecular mass close to 170 kDa is expressed at the protein level in human skeletal muscle. The amount of 170-kDa protein appears to be independent of the basal concentration of leptin in serum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1alpha or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4+/-0.1 vs 3.6+/-0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging is a complex phenomenon that affects organs and tissues at a different rate. With advancing age, the skeletal muscle undergoes a progressive loss of mass and strength, a process known as sarcopenia that leads to a decreased mobility and increased risk of falls and invalidity. On the other side, another organ such as the liver that is endowed with a peculiar regenerative capacity seems to be only marginally affected by aging. Accordingly, clinical data indicate that liver transplantation from aged subjects has, in specific conditions, function and duration comparable to those achievable with grafts of liver from young donors. The molecular mechanisms involved in these peculiar aging patterns are still largely unknown, but it is conceivable that protein degradation machineries might play an important role, as they are responsible for the maintenance of cellular homeostasis. Indeed, it has been suggested that alteration of proteostasis may contribute to the onset and progression of several age-related pathological conditions, including skeletal muscle wasting and sarcopenia, as well as to the aging phenotypes. The ubiquitin-proteasome system (UPS) is one of the most important cellular pathways for intracellular degradation of short-lived as well as damaged proteins. To date, studies on the age-related modifications of proteasomes in liver and skeletal muscle were performed prevalently in rodents, with controversial results, while only preliminary observations have been obtained in human liver and skeletal muscle. In this scenario, we want to investigate and characterize in humans the age-related modifications of proteasomes of these two different organs.