933 resultados para Sistema di feedback,Sostenibilità,Machine learning,Agenda 2030,SDI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis aims to investigate the issues concerning the maintenance of a Machine Learning model over time, both about the versioning of the model itself and the data on which it is trained and about data monitoring tools and their distribution. The themes of Data Drift and Concept Drift were then explored and the performance of some of the most popular techniques in the field of Anomaly detection, such as VAE, PCA, and Monte Carlo Dropout, were evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro di tesi presentato è nato da una collaborazione con il Politecnico di Macao, i referenti sono: Prof. Rita Tse, Prof. Marcus Im e Prof. Su-Kit Tang. L'obiettivo consiste nella creazione di un modello di traduzione automatica italiano-cinese e nell'osservarne il comportamento, al fine di determinare se sia o meno possibile l'impresa. Il trattato approfondisce l'argomento noto come Neural Language Processing (NLP), rientrando dunque nell'ambito delle traduzioni automatiche. Sono servizi che, attraverso l'ausilio dell'intelligenza artificiale sono in grado di elaborare il linguaggio naturale, per poi interpretarlo e tradurlo. NLP è una branca dell'informatica che unisce: computer science, intelligenza artificiale e studio di lingue. Dal punto di vista della ricerca, le più grandi sfide in questo ambito coinvolgono: il riconoscimento vocale (speech-recognition), comprensione del testo (natural-language understanding) e infine la generazione automatica di testo (natural-language generation). Lo stato dell'arte attuale è stato definito dall'articolo "Attention is all you need" \cite{vaswani2017attention}, presentato nel 2017 a partire da una collaborazione di ricercatori della Cornell University.\\ I modelli di traduzione automatica più noti ed utilizzati al momento sono i Neural Machine Translators (NMT), ovvero modelli che attraverso le reti neurali artificiali profonde, sono in grado effettuare traduzioni o predizioni. La qualità delle traduzioni è particolarmente buona, tanto da arrivare quasi a raggiungere la qualità di una traduzione umana. Il lavoro infatti si concentrerà largamente sullo studio e utilizzo di NMT, allo scopo di proporre un modello funzionale e che sia in grado di performare al meglio nelle traduzioni da italiano a cinese e viceversa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industria 4.0 ha coinvolto il settore agroalimentare introducendo nuove strategie di tracciabilità, a favore della sostenibilità e della sicurezza alimentare. L’Organizzazione Internazionale della Vigna e del Vino pone tra gli obiettivi per il 2024 la transizione digitale della filiera, così da avere una tracciabilità trasparente e affidabile. Questo fornisce un vantaggio ai produttori e ai consumatori che dispongono di maggiori informazioni quantitative e qualitative del prodotto. I sistemi di tracciabilità sono integrati nella supply chain aumentandone la resilienza; tuttavia, la maggior parte degli ERP in commercio ricostruiscono la tracciabilità a posteriori: dal codice lotto finale si ricompone tutto il processo. Per monitorare costantemente la filiera ed incrementarne la trasparenza si stanno integrando nuove tecnologie alla tracciabilità, come l’intelligenza artificiale e la blockchain. Obiettivo di questa tesi è la progettazione di un sistema di tracciabilità blockchain. Pertanto, si introduce alla tracciabilità e alla blockchain descrivendo i principali contributi in letteratura che propongono approcci e strategie, evidenziando vantaggi e sfide future. Poi, si presenta il caso Moncaro, cooperativa agricola che ha cantine e vigneti nel territorio marchigiano, analizzando il processo di vinificazione in bianco dal punto di vista del flusso fisico e informativo, rispettivamente tramite BPMN e Relationship chart. Ai fini della modellazione e della scelta dei dati da inserire in tracciabilità, si analizzano le informazioni registrate negli ERP sviluppati da Apra s.p.a., software house, di cui Moncaro fruisce. Quindi, si propone la formulazione di un algoritmo in pseudocodice che permette di collegare sequenzialmente le attività, così, da ottenere la tracciabilità real time e un’architettura che può gestire tutte le informazioni della supply chain. Infine, si è implementato uno scenario produttivo reale, mediante l’architettura di database a grafo di Neo4j AuraDB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Estatística e Gestão do Risco