982 resultados para Sistema RANKL-RANK-OPG


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental tissues have special characteristics, and its regenerative capacity is noteworthy. However, understanding the circumstances that lead to regeneration is challenging. In this study, the chronology of the healing process after immediate replantation of rat incisor teeth was examined by histological and immunohistochemical analyses within a 60-day period. Thirty-six male Wistar rats had their maxillary right incisors extracted and replanted after 15min in saline storage. The rats were sacrificed immediately 3, 7, 15, 28, and 60days after replantation. The histological analysis showed rupture of the periodontal ligament and formation of a blood clot, which started being replaced by a connective tissue after 3days. At 7days, the gingival mucosa epithelium was reinserted and areas of root resorption could be seen. At 15days, the periodontal ligament was repaired. At 3days, the pulp presented an absence of the odontoblast layer, which started being replaced by a connective tissue. This tissue suffered gradual calcification, filling the root canal at 28 and 60days. The root ends were closed. The immunohistochemical analysis revealed greater expression of OP, OPG, and RANK proteins in the initial periods (0 and 3days), while TRAP expression predominated at 28 and 60days (P<0.05). In conclusion, in delayed tooth replantation, there is great new bone formation activity in the earlier periods of the repair process, while a predominance of bone resorption and remodeling is observed in the more advanced periods. © 2012 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated that histamine interferes with the recruitment, formation and activity of osteoclasts via H1- and H2-receptors. Cimetidine is a H2-receptor antagonist used for treatment of gastric ulcers that seems to prevent bone resorption. In this study, a possible cimetidine interference was investigated in the number of alveolar bone osteoclasts. The incidence of osteoclast apoptosis and immunoexpression of RANKL (receptor activator of nuclear factor κB ligand) was also evaluated. Adult male rats were treated with 100mg kg-1 of cimetidine for 50days (CimG); the sham group (SG) received saline. Maxillary fragments containing the first molars and alveolar bone were fixed, decalcified and embedded in paraffin. The sections were stained by H&E or submitted to tartrate-resistant acid phosphatase (TRAP) method. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) method and immunohistochemical reactions for detecting caspase-3 and RANKL were performed. The number of TRAP-positive osteoclasts, the frequency of apoptotic osteoclasts and the numerical density of RANKL-positive cells were obtained. Osteoclast death by apoptosis was confirmed by transmission electron microscopy (TEM). In CimG, TRAP-positive osteoclasts with TUNEL-positive nuclei and caspase-3-immunolabeled osteoclasts were found. A significant reduction in the number of TRAP-positive osteoclasts and a high frequency of apoptotic osteoclasts were observed in CimG. Under TEM, detached osteoclasts from the bone surface showed typical features of apoptosis. Moreover, a significant reduction in the numerical density of RANKL-positive cells was observed in CimG. The significant reduction in the number of osteoclasts may be due to cimetidine-induced osteoclast apoptosis. However, RANKL immunoexpression reduction also suggests a possible interference of cimetidine treatment in the osteoclastogenesis. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine proteinase inhibitor cystatin C inhibited RANKL-stimulated osteoclast formation in mouse bone marrow macrophage cultures, an effect associated with decreased mRNA expression of Acp5, Calcr, Ctsk, Mmp9, Itgb3, and Atp6i, without effect on proliferation or apoptosis. The effects were concentration dependent with half-maximal inhibition at 0.3 μM. Cystatin C also inhibited osteoclast formation when RANKL-stimulated osteoclasts were cultured on bone, leading to decreased formation of resorption pits. RANKL-stimulated cells retained characteristics of phagocytotic macrophages when cotreated with cystatin C. Three other cysteine proteinase inhibitors, cystatin D, Z-RLVG-CHN2 (IC50 0.1 μM), and E-64 (IC 50 3 μM), also inhibited osteoclast formation in RANKL-stimulated macrophages. In addition, cystatin C, Z-RLVG-CHN2, and E-64 inhibited osteoclastic differentiation of RANKL-stimulated CD14+ human monocytes. The effect by cystatin C on differentiation of bone marrow macrophages was exerted at an early stage after RANKL stimulation and was associated with early (4 h) inhibition of c-Fos expression and decreased protein and nuclear translocation of c-Fos. Subsequently, p52, p65, IκBα, and Nfatc1 mRNA were decreased. Cystatin C was internalized in osteoclast progenitors, a process requiring RANKL stimulation. These data show that cystatin C inhibits osteoclast differentiation and formation by interfering intracellularly with signaling pathways downstream RANK. © FASEB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Local invasion of bone is a frequent complication of oral squamous cell carcinoma (OSCC). Development of these osteolytic lesions is mediated by osteoclasts. Receptor activation of NF-kappa B ligand (RANKL) signaling, counteracted by osteoprotegerin (OPG), regulates osteoclastogenesis. Previous studies in rodent models have demonstrated that inhibition of RANKL decreases tumor growth and lesions within bone. However, the contributory role of OSCC cells to this disease process has yet to be defined.Methods: RANKL expression was assessed in a panel of OSCC cell lines by qPCR, flow cytometry, and ELISA. Induction of osteoclastogenesis was assessed by co-culture with macrophages or with OSCC-derived conditioned medium. In an animal model of bone invasion, nude mice were injected intratibially with UMSCC-11B cells expressing a RANKL luciferase promoter to detect tumor-derived RANKL activity. Osteolytic lesions were analyzed by X-ray, micro-CT, and histological methods. RANKL expression was assessed in human OSCC tissues by immunohistochemistry.Results: We demonstrated that OSCCs express varied levels of all RANKL isoforms, both membrane-bound and soluble RANKL. Both co-culture and treatment with OSCC-conditioned media induced osteoclastogenesis. In mice, we demonstrated human RANKL promoter activity during bone invasion. Over the course of the experiment, animals suffered osteolytic lesions as RANKL-driven luciferase expression increased with time. After 8 weeks, human-derived RANKL was detected in areas of bone resorption by immunohistochemistry. Similar epithelial RANKL expression was detected in human OSCC tissues.Conclusion: These data demonstrate the ability of OSCCs to produce RANKL, directly altering the tumor microenvironment to increase osteoclastogenesis and mediate local bone invasion. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)