972 resultados para Single base polymorphism


Relevância:

90.00% 90.00%

Publicador:

Resumo:

AbstractBackground:Galectin-3, a β-galactoside binding lectin, has been described as a mediator of cardiac fibrosis in experimental studies and as a risk factor associated with cardiovascular events in subjects with heart failure. Previous studies have evaluated the genetic susceptibility to Chagas disease in humans, including the polymorphisms of cytokine genes, demonstrating correlations between the genetic polymorphism and cardiomyopathy development in the chronic phase. However, the relationship between the galectin-3 single nucleotide polymorphism (SNP) and phenotypic variations in Chagas disease has not been evaluated.Objective:The present study aimed to determine whether genetic polymorphisms of galectin-3 may predispose to the development of cardiac forms of Chagas disease.Methods:Fifty-five subjects with Chagas disease were enrolled in this observational study. Real-time polymerase chain reaction (PCR) was used for genotyping the variants rs4644 and rs4652 of the galectin-3 gene.Results:For the SNP rs4644, the relative risk for the cardiac form was not associated with the genotypes AA (OR = 0.79, p = 0.759), AC (OR = 4.38, p = 0.058), or CC (OR = 0.39, p = 0.127). Similarly, for the SNP rs4652, no association was found between the genotypes AA (OR = 0.64, p = 0.571), AC (OR = 2.85, p = 0.105), or CC (OR = 0.49, p = 0.227) and the cardiac form of the disease.Conclusion:Our results showed no association between the different genotypes for both SNPs of the galectin-3 gene and the cardiac form of Chagas disease. (Arq Bras Cardiol. 2015; [online].ahead print, PP.0-0)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Colour polymorphism is widespread among vertebrates and plays important roles in prey-predator interactions, thermoregulation, social competition, and sexual selection. However, the genetic mechanisms involved in colour variation have been studied mainly in domestic mammals and birds, whereas information on wild animals remains scarce. Interestingly, the pro-opiomelanocortin gene (POMC) gives rise to melanocortin hormones that trigger melanogenesis (by binding the melanocortin-1-receptor; Mc1r) and other physiological and behavioural functions (by binding the melanocortin receptors Mc1-5rs). Owing to its pleiotropic effect, the POMC gene could therefore account for the numerous covariations between pigmentation and other phenotypic traits. We screened the POMC and Mc1r genes in 107 wild asp vipers (Vipera aspis) that can exhibit four discrete colour morphs (two unpatterned morphs: concolor or melanistic; two patterned morphs: blotched or lined) in a single population. Our study revealed a correlation between a single nucleotide polymorphism situated within the 3-untranslated region of the POMC gene and colour variation, whereas Mc1r was not found to be polymorphic. To the best of our knowledge, we disclose for the first time a relationship between a mutation at the POMC gene and coloration in a wild animal, as well as a correlation between a genetic marker and coloration in a snake species. Interestingly, similar mutations within the POMC 3-untranslated region are linked to human obesity and alcohol and drug dependence. Combined with our results, this suggests that the 3-untranslated region of the POMC gene may play a role in its regulation in distant vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identification of populations of Bulinus nasutus and B. globosus from East Africa is unreliable using characters of the shell. In this paper, a molecular method of identification is presented for each species based on DNA sequence variation within the mitochondrial cytochrome oxidase subunit I (COI) as detected by a novel multiplexed SNaPshotTM assay. In total, snails from 7 localities from coastal Kenya were typed using this assay and variation within shell morphology was compared to reference material from Zanzibar. Four locations were found to contain B. nasutus and 2 locations were found to contain B. globosus. A mixed population containing both B. nasutus and B. globosus was found at Kinango. Morphometric variation between samples was considerable and UPGMA cluster analysis failed to differentiate species. The multiplex SNaPshotTM assay is an important development for more precise methods of identification of B. africanus group snails. The assay could be further broadened for identification of other snail intermediate host species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to test whether oligonucleotide-targeted gene repair can correct the point mutation in genomic DNA of PDE6b(rd1) (rd1) mouse retinas in vivo. METHODS: Oligonucleotides (ODNs) of 25 nucleotide length and complementary to genomic sequence subsuming the rd1 point mutation in the gene encoding the beta-subunit of rod photoreceptor cGMP-phosphodiesterase (beta-PDE), were synthesized with a wild type nucleotide base at the rd1 point mutation position. Control ODNs contained the same nucleotide bases as the wild type ODNs but with varying degrees of sequence mismatch. We previously developed a repeatable and relatively non-invasive technique to enhance ODN delivery to photoreceptor nuclei using transpalpebral iontophoresis prior to intravitreal ODN injection. Three such treatments were performed on C3H/henJ (rd1) mouse pups before postnatal day (PN) 9. Treatment outcomes were evaluated at PN28 or PN33, when retinal degeneration was nearly complete in the untreated rd1 mice. The effect of treatment on photoreceptor survival was evaluated by counting the number of nuclei of photoreceptor cells and by assessing rhodopsin immunohistochemistry on flat-mount retinas and sections. Gene repair in the retina was quantified by allele-specific real time PCR and by detection of beta-PDE-immunoreactive photoreceptors. Confirmatory experiments were conducted using independent rd1 colonies in separate laboratories. These experiments had an additional negative control ODN that contained the rd1 mutant nucleotide base at the rd1 point mutation site such that the sole difference between treatment with wild type and control ODN was the single base at the rd1 point mutation site. RESULTS: Iontophoresis enhanced the penetration of intravitreally injected ODNs in all retinal layers. Using this delivery technique, significant survival of photoreceptors was observed in retinas from eyes treated with wild type ODNs but not control ODNs as demonstrated by cell counting and rhodopsin immunoreactivity at PN28. Beta-PDE immunoreactivity was present in retinas from eyes treated with wild type ODN but not from those treated with control ODNs. Gene correction demonstrated by allele-specific real time PCR and by counts of beta-PDE-immunoreactive cells was estimated at 0.2%. Independent confirmatory experiments showed that retinas from eyes treated with wild type ODN contained many more rhodopsin immunoreactive cells compared to retinas treated with control (rd1 sequence) ODN, even when harvested at PN33. CONCLUSIONS: Short ODNs can be delivered with repeatable efficiency to mouse photoreceptor cells in vivo using a combination of intravitreal injection and iontophoresis. Delivery of therapeutic ODNs to rd1 mouse eyes resulted in genomic DNA conversion from mutant to wild type sequence, low but observable beta-PDE immunoreactivity, and preservation of rhodopsin immunopositive cells in the outer nuclear layer, suggesting that ODN-directed gene repair occurred and preserved rod photoreceptor cells. Effects were not seen in eyes treated with buffer or with ODNs having the rd1 mutant sequence, a definitive control for this therapeutic approach. Importantly, critical experiments were confirmed in two laboratories by several different researchers using independent mouse colonies and ODN preparations from separate sources. These findings suggest that targeted gene repair can be achieved in the retina following enhanced ODN delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The single nucleotide polymorphism rs7566605, located in the promoter of the INSIG2 gene, has been the subject of a strong scientific effort aimed to elucidate its possible association with body mass index (BMI). The first report showing that rs7566605 could be associated with body fatness was a genome-wide association study (GWAS) which used BMI as the primary phenotype. Many follow-up studies sought to validate the association of rs7566605 with various markers of obesity, with several publications reporting inconsistent findings. BMI is considered to be one of the measures of choice to evaluate body fatness and there is evidence that body fatness is related with an increased risk of breast cancer (BC). Methods we tested in a large-scale association study (3,973 women, including 1,269 invasive BC cases and 2,194 controls), nested within the EPIC cohort, the involvement of rs7566605 as predictor of BMI and BC risk. Results and Conclusions In this study we were not able to find any statistically significant association between this SNP and BMI, nor did we find any significant association between the SNP and an increased risk of breast cancer overall and by subgroups of age, or menopausal status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Toxoplasmosis is a worldwide zoonosis that generally produces an asymptomatic infection. In some cases, however, toxoplasmosis infection can lead to ocular damage. The immune system has a crucial role in both the course of the infection and in the evolution of toxoplasmosis disease. In particular, IFN-³ plays an important role in resistance to toxoplasmosis. Polymorphisms in genes encoding cytokines have been shown to have an association with susceptibility to parasitic diseases. The aim of this work was to analyse the occurrence of polymorphisms in the gene encoding IFN-³ (+874T/A) among Toxoplasma gondii seropositive individuals, including those with ocular lesions caused by the parasite, from a rural population of Santa Rita de Cássia, Barra Mansa, state of Rio de Janeiro, Brazil. Further, we verified which of these polymorphisms could be related to susceptibility to the development of ocular toxoplasmosis. This study included 34 individuals with ocular toxoplasmosis (ocular group) and 134 without ocular lesions (control group). The differences between A and T allele distributions were not statistically significant between the two groups. However, we observed that a higher frequency of individuals from the ocular group possessed the A/A genotype, when compared with the control group, suggesting that homozygocity for the A allele could enhance susceptibility to ocular toxoplasmosis in T. gondii infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are recognized posttranscriptional gene repressors involved in the control of almost every biological process. Allelic variants in these regions may be an important source of phenotypic diversity and contribute to disease susceptibility. We analyzed the genomic organization of 325 human miRNAs (release 7.1, miRBase) to construct a panel of 768 single-nucleotide polymorphisms (SNPs) covering approximately 1 Mb of genomic DNA, including 131 isolated miRNAs (40%) and 194 miRNAs arranged in 48 miRNA clusters, as well as their 5-kb flanking regions. Of these miRNAs, 37% were inside known protein-coding genes, which were significantly associated with biological functions regarding neurological, psychological or nutritional disorders. SNP coverage analysis revealed a lower SNP density in miRNAs compared with the average of the genome, with only 24 SNPs located in the 325 miRNAs studied. Further genotyping of 340 unrelated Spanish individuals showed that more than half of the SNPs in miRNAs were either rare or monomorphic, in agreement with the reported selective constraint on human miRNAs. A comparison of the minor allele frequencies between Spanish and HapMap population samples confirmed the applicability of this SNP panel to the study of complex disorders among the Spanish population, and revealed two miRNA regions, hsa-mir-26a-2 in the CTDSP2 gene and hsa-mir-128-1 in the R3HDM1 gene, showing geographical allelic frequency variation among the four HapMap populations, probably because of differences in natural selection. The designed miRNA SNP panel could help to identify still hidden links between miRNAs and human disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape-human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP). MATERIALS AND METHODS: Genomic DNA samples from 343 CD and 663 non-IBD control patients (male and female) from a combined German, Swiss, and Polish cohort were genotyped for the presence of the PTPN2 SNPs, rs2542151, and rs1893217. PTPN2-variant rs1893217 was introduced into T(84) IEC or THP-1 cells using a lentiviral vector. RESULTS: We identified a novel association between the genetic variant, rs1893217, located in intron 7 of the PTPN2 gene and CD. Human THP-1 monocytes carrying this variant revealed increased MAPK activation as well as elevated mRNA expression of T-bet transcription factor and secretion of interferon-γ in response to the bacterial wall component, MDP. In contrast, secretion of interleukin-8 and tumor necrosis factor were reduced. In both, T(84) IEC and THP-1 monocytes, autophagosome formation was impaired. CONCLUSIONS: We identified a novel CD-associated PTPN2 variant that modulates innate immune responses to bacterial antigens. These findings not only provide key insights into the effects of a functional mutation on a clinically relevant gene, but also reveal how such a mutation could contribute to the onset of disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this work was to determine the safe shelf life of single-base propellants. The kinetic parameters relative to the consumption of the stabilizer diphenylamine (DPA) added to the propellant were determined as a function of the storage and ageing time. High Performance Liquid Chromatography (HPLC) with spectrophotometric detection was used to determine the DPA percentage before and after the artificial ageing at 60, 70 and 80 ºC. The experimental data were very well adjusted to a pseudo-first order kinetic model and the respective kinetic constants are 8.0-10-3 day-1 (60 ºC); 1.9-10-2 day-1 (70 ºC); 1.2-10-1 day-1 (80 ºC). The activation energy was calculated as 130 kJ mol-1 and the half-time for depletion of the DPA at the hypothetical temperature of 40 ºC of storage was estimated as being 6 years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To investigate the association between CFH gene polymorphism and response to ranibizumab in Brazilian patients with neovascular age-related macular degeneration (AMD).Methods: 95 patients were genotyped for the CFH rs1061170 (Y402H) single nucleotide polymorphism. Patients with neovascular AMD initially received intravitreal ranibizumab injections for three months and were retreated as needed. Visual acuity (VA) and central retinal thickness (CRT) were measured before treatment and at 1, 3, 6, and 12 months post-treatment.Results: For patients with the TT and TC genotypes, paired comparisons of VA showed a statistically significant improvement when the data obtained at all visits were compared with baseline. Patients homozygous for the risk genotype (CC) did not show a statistically significant improvement when VA obtained at visits 1, 3, 6 and 12 were compared with baseline. For all genotypes, paired comparisons of CRT showed a statistically significant improvement when the data obtained at visits 1, 3, 6 and 12 were compared with baseline.Conclusion: Patients with the CC genotype showed poorer long-term functional response to intravitreal ranibizumab.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to determine if there is an association between the single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) and apolipoprotein E (apo E) genes and the serum lipid profile in pregnancy and puerperium. Non-diabetic women of European descent in the third semester of pregnancy (N = 120) were selected. Those with diseases or other condition that could modify their lipid profile were excluded from the study (N = 32). Serum lipids were measured by routine laboratory procedures and genomic DNA was extracted by a salting out method. LPL (PvuII and HindIII) and apo E (HhaI) SNPs were detected by the polymerase chain reaction and restriction fragment length polymorphism. Categorical and continuous variables were compared by the chi-square test and Student t-test or ANOVA, respectively. Women carrying the LPL P1P1 genotype had higher serum LDL cholesterol (N = 21; 155 ± 45 mg/dL) than women carrying the P1P2/P2P2 genotypes (N = 67; 133 ± 45 mg/dL; P = 0.032). During the puerperium period, serum levels of triglycerides and VLDL cholesterol were significantly reduced in women carrying the P1P1 (73%, P = 0.006) and P1P2 (51%, P = 0.002) genotypes but not in women carrying the P2P2 genotype (23%, P > 0.05). On the other hand, serum concentrations of lipids did not differ between the LPL HindIII and apo E genotypes during pregnancy and after delivery. We conclude that LPL PvuII SNP is associated with variations in serum lipids during pregnancy and the puerperal period in non-diabetic women.