899 resultados para Simulation study
Resumo:
Multi-center clinical trials are very common in the development of new drugs and devices. One concern in such trials, is the effect of individual investigational sites enrolling small numbers of patients on the overall result. Can the presence of small centers cause an ineffective treatment to appear effective when treatment-by-center interaction is not statistically significant?^ In this research, simulations are used to study the effect that centers enrolling few patients may have on the analysis of clinical trial data. A multi-center clinical trial with 20 sites is simulated to investigate the effect of a new treatment in comparison to a placebo treatment. Twelve of these 20 investigational sites are considered small, each enrolling less than four patients per treatment group. Three clinical trials are simulated with sample sizes of 100, 170 and 300. The simulated data is generated with various characteristics, one in which treatment should be considered effective and another where treatment is not effective. Qualitative interactions are also produced within the small sites to further investigate the effect of small centers under various conditions.^ Standard analysis of variance methods and the "sometimes-pool" testing procedure are applied to the simulated data. One model investigates treatment and center effect and treatment-by-center interaction. Another model investigates treatment effect alone. These analyses are used to determine the power to detect treatment-by-center interactions, and the probability of type I error.^ We find it is difficult to detect treatment-by-center interactions when only a few investigational sites enrolling a limited number of patients participate in the interaction. However, we find no increased risk of type I error in these situations. In a pooled analysis, when the treatment is not effective, the probability of finding a significant treatment effect in the absence of significant treatment-by-center interaction is well within standard limits of type I error. ^
Resumo:
Although studies of a number of parallel implementations of logic programming languages are now available, the results are difficult to interpret due to the multiplicity of factors involved, the effect of each of which is difficult to sepárate. In this paper we present the results of a highlevel simulation study of or- and independent and-parallelism with a wide selection of Prolog programs that aims to facilítate this separation. We hope this study will be instrumental in better understanding and comparing results from actual implementations, as shown by an example in the paper. In addition, the paper examines some of the issues and tradeoffs associated with the combination of and- and or-parallelism and proposes reasonable solutions based on the simulation data.
Resumo:
Goal-level Independent and-parallelism (IAP) is exploited by scheduling for simultaneous execution two or more goals which will not interfere with each other at run time. This can be done safely even if such goals can produce multiple answers. The most successful IAP implementations to date have used recomputation of answers and sequentially ordered backtracking. While in principle simplifying the implementation, recomputation can be very inefficient if the granularity of the parallel goals is large enough and they produce several answers, while sequentially ordered backtracking limits parallelism. And, despite the expected simplification, the implementation of the classic schemes has proved to involve complex engineering, with the consequent difficulty for system maintenance and expansion, and still frequently run into the well-known trapped goal and garbage slot problems. This work presents ideas about an alternative parallel backtracking model for IAP and a simulation studio. The model features parallel out-of-order backtracking and relies on answer memoization to reuse and combine answers. Whenever a parallel goal backtracks, its siblings also perform backtracking, but after storing the bindings generated by previous answers. The bindings are then reinstalled when combining answers. In order not to unnecessarily penalize forward execution, non-speculative and-parallel goals which have not been executed yet take precedence over sibling goals which could be backtracked over. Using a simulator, we show that this approach can bring significant performance advantages over classical approaches.
Resumo:
The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell–Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2–4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a “volumic” LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.
Resumo:
Objective: To compare the cost effectiveness of two possible modifications to the current UK screening programme: shortening the screening interval from three to two years and extending the age of invitation to a final screen from 64 to 69.
Resumo:
The mechanical response of the cornea subjected to a non-contact air-jet tonometry diagnostic test represents an interplay between its geometry, the corneal material behavior and the loading. The objective is to study this interplay to better understand and interpret the results obtained with a non-contact tonometry test. A patient-specific finite element model of a healthy eye, accounting for the load free configuration, was used. The corneal tissue was modeled as an anisotropic hyperelastic material with two preferential directions. Three different sets of parameters within the human experimental range obtained from inflation tests were considered. The influence of the IOP was studied by considering four pressure levels (10–28 mmHg) whereas the influence of corneal thickness was studied by inducing a uniform variation (300–600 microns). A Computer Fluid Dynamics (CFD) air-jet simulation determined pressure loading exerted on the anterior corneal surface. The maximum apex displacement showed a linear variation with IOP for all materials examined. On the contrary, the maximum apex displacement followed a cubic relation with corneal thickness. In addition, a significant sensitivity of the apical displacement to the corneal stiffness was also obtained. Explanation to this behavior was found in the fact that the cornea experiences bending when subjected to an air-puff loading, causing the anterior surface to work in compression whereas the posterior surface works in tension. Hence, collagen fibers located at the anterior surface do not contribute to load bearing. Non-contact tonometry devices give useful information that could be misleading since the corneal deformation is the result of the interaction between the mechanical properties, IOP, and geometry. Therefore, a non-contact tonometry test is not sufficient to evaluate their individual contribution and a complete in-vivo characterization would require more than one test to independently determine the membrane and bending corneal behavior.
Resumo:
Ripples, present in free standing graphene, have an important influence in the mechanical behavior of this two-dimensional material. In this work we show through nanoindentation simulations, how out-of-plane displacements can be modified by strain resulting in softening of the membrane under compression and stiffening under tension. Irradiation also induces changes in the mechanical properties of graphene. Interestingly, compressed samples, irradiated at low doses are stiffened by the irradiation while samples under tensile strain do not show significant changes in their mechanical properties. These simulations indicate that vacancies, produced by the energetic ions, cannot be the ones directly responsible for this behavior. However, changes in roughness induced by the momentum transferred from the energetic ions to the membrane, can explain these differences. These results provide an alternative explanation to recent experimental observations of stiffening of graphene under low dose irradiation, as well as paths to tailor the mechanical properties of this material via applied strain and irradiation.
Resumo:
BACKGROUND Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. METHODS In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. RESULTS ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p < 0.001) and showed fewer incorrect decompressions (26 vs. 33 %, p = 0.044). On the other hand, absolute hands-off time was higher in the hfCPR group (67 vs. 60 s, p = 0.021). CONCLUSIONS The quality of CPR with human feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.
Resumo:
"May 1983."
Resumo:
Mode of access: Internet.
Resumo:
Authors: J. Christopher Hewlett, Kathren M. Eagles, Carl J. Huval, Larry L. Daggett.
Resumo:
Includes bibliographical references.
Resumo:
"Contract no. US AEC AT (11-1)1469."
Resumo:
Includes bibliographical references.