999 resultados para Simulation of theoperation of a dam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollagenous protein in extrafibrillar protein matrix) and hydroxyapatite (HA, a mineral nanoplatelet in mineralized collagen fibrils) were investigated using molecular dynamics method. We found that the interfacial mechanical behaviour is governed by the electrostatic attraction between acidic amino acid residues in OPN and calcium in HA. Higher energy dissipation is associated with the OPN peptides with a higher number of acidic amino acid residues. When loading in the interface direction, new bonds between some acidic residues and HA surface are formed, resulting in a stick-slip type motion of OPN peptide on the HA surface and high interfacial energy dissipation. The formation of new bonds during loading is considered to be a key mechanism responsible for high fracture resistance observed in bone and other biological materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the X-series impulse facilities at The University of Queensland and show that they can produce useful high speed flows of relevance to the study of high temperature radiating flow flields characteristic of atmospheric entry. Two modes of operation are discussed: (a) the expansion tube mode which is useful for subscale aerodynamic testing of vehicles and (b) the non-reflected shock tube mode which can be used to emulate the nonequilibrium radiating region immediately following the bow shock of a flight vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-translating, long duration thunderstorm downburst has been simulated experimentally and numerically by modelling a spatially stationary steady flow impinging air jet. Velocity profiles were shown to compare well with an upper-bound of velocity measurements reported for full-scale microbursts. Velocity speed-up over a range of topographic features in simulated downburst flow was also tested with comparisons made to previous work in a similar flow, and also boundary layer wind tunnel experiments. It was found that the amplification measured above the crest of topographic features in simulated downburst flow was up to 35% less than that observed in boundary layer flow for all shapes tested. From the computational standpoint we conclude that the Shear Stress Transport (SST) model performs the best from amongst a range of eddy-viscosity and second moment closures tested for modelling the impinging jet flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convective downburst wind storms generate the peak annual gust wind speed for many parts of the non-cyclonic world at return periods of importance for ultimate limit state design. Despite this there is little clear understanding of how to appropriately design for these wind events given their significant dissimilarities to boundary layer winds upon which most design is based. To enhance the understanding of wind fields associated with these storms a three-dimensional numerical model was developed to simulate a multitude of idealised downburst scenarios and to investigate their near-ground wind characteristics. Stationary and translating downdraft wind events in still and sheared environments were simulated with baseline results showing good agreement with previous numerical work and full-scale observational data. Significant differences are shown in the normalised peak wind speed velocity profiles depending on the environmental wind conditions in the vicinity of the simulated event. When integrated over the height of mid- to high rise structures, all simulated profiles are shown to produce wind loads smaller than an equivalent 10 m height matched open terrain boundary layer profile. This suggests that for these structures the current design approach is conservative from an ultimate loading standpoint. Investigating the influence of topography on the structure of the simulated near-ground downburst wind fields, it is shown that these features amplify wind speeds in a manner similar to that expected for boundary layer winds, but the extent of amplification is reduced. The level of reduction is shown to be dependent on the depth of the simulated downburst outflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scaffolds are porous biocompatible materials with suitable microarchitectures that are designed to allow for cell adhesion, growth and proliferation. They are used in combination with cells in regenerative medicine to promote tissue regeneration by means of a controlled deposition of natural extracellular matrix by the hosted cells therein. This healing process is in many cases accompanied by scaffold degradation up to its total disappearance when the scaffold is made of a biodegradable material. This work presents a computational model that simulates the degradation of scaffolds. The model works with three-dimensional microstructures, which have been previously discretised into small cubic homogeneous elements, called voxels. The model simulates the evolution of the degradation of the scaffold using a Monte Carlo algorithm, which takes into account the curvature of the surface of the fibres. The simulation results obtained in this study are in good agreement with empirical degradation measurements performed by mass loss on scaffolds after exposure to an etching alkaline solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convectively driven downburst winds pose a threat to structures and communities in many regions of Australia not subject to tropical cyclones. Extreme value analysis shows that for return periods of interest to engineering design these events produce higher gust wind speeds than synoptic scale windstorms. Despite this, comparatively little is known of the near ground wind structure of these potentially hazardous windstorms. With this in mind, a series of idealised three-dimensional numerical simulations were undertaken to investigate convective storm wind fields. A dry, non-hydrostatic, sub-cloud model with parameterisation of the microphysics was used. Simulations were run with a uniform 20 m horizontal grid resolution and a variable vertical resolution increasing from 1 m. A systematic grid resolution study showed further refinement did not alter the morphological structure of the outflow. Simulations were performed for stationary downbursts in a quiescent air field, stationary downbursts embedded within environmental boundary layer winds, and also translating downbursts embedded within environmental boundary layer winds.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arc discharge ablation with a catalyst-filled carbon anode in a helium background was used for the synthesis of graphene and carbon nanotubes. In this paper, we present the results of the numerical simulation of the distribution of various plasma parameters in discharge, as well as the distribution of carbon flux on the nanotube surface, for the typical discharge with an arc current of 60 A and a background gas pressure of 68 kPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.