985 resultados para Signal-dependent experimentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azithromycin at clinically relevant doses does not inhibit planktonic growth of the opportunistic pathogen Pseudomonas aeruginosa but causes markedly reduced formation of biofilms and quorum-sensing-regulated extracellular virulence factors. In the Gac/Rsm signal transduction pathway, which acts upstream of the quorum-sensing machinery in P. aeruginosa, the GacA-dependent untranslated small RNAs RsmY and RsmZ are key regulatory elements. As azithromycin treatment and mutational inactivation of gacA have strikingly similar phenotypic consequences, the effect of azithromycin on rsmY and rsmZ expression was investigated. In planktonically growing cells, the antibiotic strongly inhibited the expression of both small RNA genes but did not affect the expression of the housekeeping gene proC. The azithromycin treatment resulted in reduced expression of gacA and rsmA, which are known positive regulators of rsmY and rsmZ, and of the PA0588-PA0584 gene cluster, which was discovered as a novel positive regulatory element involved in rsmY and rsmZ expression. Deletion of this cluster resulted in diminished ability of P. aeruginosa to produce pyocyanin and to swarm. The results of this study indicate that azithromycin inhibits rsmY and rsmZ transcription indirectly by lowering the expression of positive regulators of these small RNA genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of IκB kinase (IKK) β-dependent NF-κB signaling in hematopoietic cells is associated with increased granulopoiesis. Here we identify a regulatory cytokine loop that causes neutrophilia in Ikkβ-deficient mice. TNF-α-dependent apoptosis of myeloid progenitor cells leads to the release of IL-1β, which promotes Th17 polarization of peripheral CD4(+) T cells. Although the elevation of IL-17 and the consecutive induction of granulocyte colony-stimulating factor compensate for the loss of myeloid progenitor cells, the facilitated induction of Th17 cells renders Ikkβ-deficient animals more susceptible to the development of experimental autoimmune encephalitis. These results unravel so far unanticipated direct and indirect functions for IKKβ in myeloid progenitor survival and maintenance of innate and Th17 immunity and raise concerns about long-term IKKβ inhibition in IL-17-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents a comparison between threeFourier-based motion compensation (MoCo) algorithms forairborne synthetic aperture radar (SAR) systems. These algorithmscircumvent the limitations of conventional MoCo, namelythe assumption of a reference height and the beam-center approximation.All these approaches rely on the inherent time–frequencyrelation in SAR systems but exploit it differently, with the consequentdifferences in accuracy and computational burden. Aftera brief overview of the three approaches, the performance ofeach algorithm is analyzed with respect to azimuthal topographyaccommodation, angle accommodation, and maximum frequencyof track deviations with which the algorithm can cope. Also, ananalysis on the computational complexity is presented. Quantitativeresults are shown using real data acquired by the ExperimentalSAR system of the German Aerospace Center (DLR).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fcepsilon-receptor antibodies. Antigens, anti-IgE and anti-FcepsilonRs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE(2)) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists used to treat type 2 diabetes. TZD treatment induces side effects such as peripheral fluid retention, often leading to discontinuation of therapy. Previous studies have shown that PPARγ activation by TZD enhances the expression or function of the epithelial sodium channel (ENaC) through different mechanisms. However, the effect of TZDs on ENaC activity is not clearly understood. Here, we show that treating Xenopus laevis oocytes expressing ENaC and PPARγ with the TZD rosiglitazone (RGZ) produced a twofold increase of amiloride-sensitive sodium current (Iam), as measured by two-electrode voltage clamp. RGZ-induced ENaC activation was PPARγ-dependent since the PPARγ antagonist GW9662 blocked the activation. The RGZ-induced Iam increase was not mediated through direct serum- and glucocorticoid-regulated kinase (SGK1)-dependent phosphorylation of serine residue 594 on the human ENaC α-subunit but by the diminution of ENaC ubiquitination through the SGK1/Nedd4-2 pathway. In accordance, RGZ increased the activity of ENaC by enhancing its cell surface expression, most probably indirectly mediated through the increase of SGK1 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli-based bioreporters for arsenic detection are typically based on the natural feedback loop that controls ars operon transcription. Feedback loops are known to show a wide range linear response to the detriment of the overall amplification of the incoming signal. While being a favourable feature in controlling arsenic detoxification for the cell, a feedback loop is not necessarily the most optimal for obtaining highest sensitivity and response in a designed cellular reporter for arsenic detection. Here we systematically explore the effects of uncoupling the topology of arsenic sensing circuitry on the developed reporter signal as a function of arsenite concentration input. A model was developed to describe relative ArsR and GFP levels in feedback and uncoupled circuitry, which was used to explore new ArsR-based synthetic circuits. The expression of arsR was then placed under the control of a series of constitutive promoters, which differed in promoter strength, and which could be further modulated by TetR repression. Expression of the reporter gene was maintained under the ArsR-controlled Pars promoter. ArsR expression in the systems was measured by using ArsR-mCherry fusion proteins. We find that stronger constitutive ArsR production decreases arsenite-dependent EGFP output from Pars and vice versa. This leads to a tunable series of arsenite-dependent EGFP outputs in a variety of systematically characterized circuitries. The higher expression levels and sensitivities of the response curves in the uncoupled circuits may be useful for improving field-test assays using arsenic bioreporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The aim of our study was to evaluate the role of cell-membrane expressed TLRs and the signaling molecule MyD88 in a murine model of OA induced by knee menisectomy (surgical partial removal of the medial meniscus [MNX]). METHODS: OA was induced in 8-10weeks old C57Bl/6 wild-type (WT) female (n=7) mice and in knockout (KO) TLR-1 (n=7), -2 (n=8), -4 (n=9) -6 (n=5), MyD88 (n=8) mice by medial menisectomy, using the sham-operated contralateral knee as a control. Cartilage destruction and synovial inflammation were evaluated by knee joint histology using the OARSI scoring method. Apoptotic chondrocytes and cartilage metabolism (collagen II synthesis and MMP-mediated aggrecan degradation) were analyzed using immunohistochemistry. RESULTS: Operated knees exhibited OA features at 8weeks post-surgery compared to sham-operated ones. In menisectomized TLR-1, -2, -4, and -6 deficient mice, cartilage lesions, synovial inflammation and cartilage metabolism were similar to that in operated WT mice. Accordingly, using the same approach, we found no significant protection in MyD88-deficient mice in terms of OA progression as compared to WT littermates. CONCLUSIONS: Deficiency of TLRs or their signalling molecule MyD88 did not impact on the severity of experimental OA. Our results demonstrate that MyD88-dependent TLRs are not involved in this murine OA model. Moreover, the dispensable role of MyD88, which is also an adaptor for IL-1 receptor signaling, suggests that IL-1 is not a key mediator in the development of OA. This latter hypothesis is strengthened by the lack of efficiency of IL-1β antagonist in the treatment of OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme. An intraluminal contrast agent concentration model was used to simulate various acquisition strategies with two profile orders for a slow-infusion of a high-relaxivity contrast agent. Filtering effects from temporally variable weighting in k-space are prominent when a centric, radial (CR) profile order is applied during contrast infusion, resulting in decreased signal enhancement and underestimation of vessel width, while both pre- and postinfusion steady-state acquisitions result in overestimation of the vessel width. Acquisition during the brief postinfusion steady-state produces the greatest signal enhancement and minimizes k-space filtering artifacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the preceding article, we demonstrated that activation of the hepatoportal glucose sensor led to a paradoxical development of hypoglycemia that was associated with increased glucose utilization by a subset of tissues. In this study, we tested whether GLUT2 plays a role in the portal glucose-sensing system that is similar to its involvement in pancreatic beta-cells. Awake RIPGLUT1 x GLUT2-/- and control mice were infused with glucose through the portal (Po-) or the femoral (Fe-) vein for 3 h at a rate equivalent to the endogenous glucose production rate. Blood glucose and plasma insulin concentrations were continuously monitored. Glucose turnover, glycolysis, and glycogen synthesis rates were determined by the 3H-glucose infusion technique. We showed that portal glucose infusion in RIPGLUT1 x GLUT24-/- mice did not induce the hypoglycemia observed in control mice but, in contrast, led to a transient hyperglycemic state followed by a return to normoglycemia; this glycemic pattern was similar to that observed in control Fe-mice and RIPGLUT1 x GLUT2-/- Fe-mice. Plasma insulin profiles during the infusion period were similar in control and RIPGLUT1 x GLUT2-/- Po- and Fe-mice. The lack of hypoglycemia development in RIPGLUT1 x GLUT2-/- mice was not due to the absence of GLUT2 in the liver. Indeed, reexpression by transgenesis of this transporter in hepatocytes did not restore the development of hypoglycemia after initiating portal vein glucose infusion. In the absence of GLUT2, glucose turnover increased in Po-mice to the same extent as that in RIPGLUT1 x GLUT2-/- or control Fe-mice. Finally, co-infusion of somatostatin with glucose prevented development of hypoglycemia in control Po-mice, but it did not affect the glycemia or insulinemia of RIPGLUT1 x GLUT2-/- Po-mice. Together, our data demonstrate that GLUT2 is required for the function of the hepatoportal glucose sensor and that somatostatin could inhibit the glucose signal by interfering with GLUT2-expressing sensing units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.