980 resultados para Signal correlation
Resumo:
In this paper, implementation and testing of non- commercial GaN HEMT in a simple buck converter for envelope amplifier in ET and EER transmission techn iques has been done. Comparing to the prototypes with commercially available EPC1014 and 1015 GaN HEMTs, experimentally demonstrated power supply provided better thermal management and increased the switching frequency up to 25MHz. 64QAM signal with 1MHz of large signal bandw idth and 10.5dB of Peak to Average Power Ratio was gener ated, using the switching frequency of 20MHz. The obtaine defficiency was 38% including the driving circuit an d the total losses breakdown showed that switching power losses in the HEMT are the dominant ones. In addition to this, some basic physical modeling has been done, in order to provide an insight on the correlation between the electrical characteristics of the GaN HEMT and physical design parameters. This is the first step in the optimization of the HEMT design for this particular application.
Resumo:
MIMO techniques allow increasing wireless channel performance by decreasing the BER and increasing the channel throughput and in consequence are included in current mobile communication standards. MIMO techniques are based on benefiting the existence of multipath in wireless communications and the application of appropriate signal processing techniques. The singular value decomposition (SVD) is a popular signal processing technique which, based on the perfect channel state information (PCSI) knowledge at both the transmitter and receiver sides, removes inter-antenna interferences and improves channel performance. Nevertheless, the proximity of the multiple antennas at each front-end produces the so called antennas correlation effect due to the similarity of the various physical paths. In consequence, antennas correlation drops the MIMO channel performance. This investigation focuses on the analysis of a MIMO channel under transmitter-side antennas correlation conditions. First, antennas correlation is analyzed and characterized by the correlation coefficients. The analysis describes the relation between antennas correlation and the appearance of predominant layers which significantly affect the channel performance. Then, based on the SVD, pre- and post-processing is applied to remove inter-antenna interferences. Finally, bit- and power allocation strategies are applied to reach the best performance. The resulting BER reveals that antennas correlation effect diminishes the channel performance and that not necessarily all MIMO layers must be activated to obtain the best performance.
Resumo:
The assumption that genes encoding tyrosine kinase receptors could play a role in human cancers has been confirmed by the identification of oncogenic mutations in the kinase domain of RET and KIT. Recently, homologous residues were found mutated in MET, in papillary renal carcinomas (PRCs). The link coupling these genetic lesions to cellular transformation is still unclear. METPRC mutations result in increased kinase activity and—in some instances, i.e., M1250T substitution—in changes in substrate specificity. A direct correlation occurs between the transforming potential of METPRC mutants and their ability to constitutively associate with signal transducers through two phosphorylated tyrosines (Y1349VHVNATY1356VNV) located in the receptor tail. Substitution of these “docking tyrosines” with phenylalanines leaves unaffected the altered properties of the kinase but abrogates transformation and invasiveness in vitro. Uncoupling the receptor from signal transducers with a tyrosine-phosphorylated peptide derivative (YpVNV) inhibits invasive growth induced by METPRC mutants. These data indicate that constitutive receptor coupling to downstream signal transducers is a key mechanism in neoplastic transformation driven by mutated MET and suggest a therapeutic strategy to target neoplastic diseases associated with this oncogene.
Resumo:
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.
Resumo:
Bombesin (BN) acts as an autocrine mitogen in various human cancers. Several pseudononapeptide BN-(6-14) analogs with a reduced peptide bond between positions 13 and 14 have been shown to suppress the mitogenic activity of BN or gastrin-releasing peptide (GRP) when assessed by radioreceptor or proliferation assays and may have significant clinical applications. The search for potent and safe BN antagonists requires the evaluation of a large series of analogs in radioreceptor and proliferation assays. In this paper, we report that the ability of BN analogs to inhibit BN-induced calcium transients in Swiss 3T3 cells shows a high correlation with their inhibitory potency as evaluated by classical proliferation tests. The assay of calcium transients allows a rapid characterization of new BN analogs (in terms of minutes rather than days) and can be adapted as a labor and cost-effective screening step in the selection of potentially relevant BN antagonists for further characterization in cell proliferation systems. We also observed that results from the assay of calcium transients in Swiss 3T3 cells can be correlated with the results of the proliferative response in HT-29 cells, a cell line that does not seem to use the same early transmembrane ionic signal system. This result suggests that the calcium pathway is not mandatory for triggering cell division by the BN receptor.
Resumo:
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.
Resumo:
This article examines whether UK portfolio returns are time varying so that expected returns follow an AR(1) process as proposed by Conrad and Kaul for the USA. It explores this hypothesis for four portfolios that have been formed on the basis of market capitalization. The portfolio returns are modelled using a kalman filter signal extraction model in which the unobservable expected return is the state variable and is allowed to evolve as a stationary first order autoregressive process. It finds that this model is a good representation of returns and can account for most of the autocorrelation present in observed portfolio returns. This study concludes that UK portfolio returns are time varying and the nature of the time variation appears to introduce a substantial amount of autocorrelation to portfolio returns. Like Conrad and Kaul if finds a link between the extent to which portfolio returns are time varying and the size of firms within a portfolio but not the monotonic one found for the USA.
Resumo:
Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.
Resumo:
This thesis discusses the need for nondestructive testing and highlights some of the limitations in present day techniques. Special interest has been given to ultrasonic examination techniques and the problems encountered when they are applied to thick welded plates. Some suggestions are given using signal processing methods. Chapter 2 treats the need for nondestructive testing as seen in the light of economy and safety. A short review of present day techniques in nondestructive testing is also given. The special problems using ultrasonic techniques for welded structures is discussed in Chapter 3 with some examples of elastic wave propagation in welded steel. The limitations in applying sophisticated signal processing techniques to ultrasonic NDT~ mainly found in the transducers generating or receiving the ultrasound. Chapter 4 deals with the different transducers used. One of the difficulties with ultrasonic testing is the interpretation of the signals encountered. Similar problems might be found with SONAR/RADAR techniques and Chapter 5 draws some analogies between SONAR/RADAR and ultrasonic nondestructive testing. This chapter also includes a discussion on some on the techniques used in signal processing in general. A special signal processing technique found useful is cross-correlation detection and this technique is treated in Chapter 6. Electronic digital compute.rs have made signal processing techniques easier to implement -Chapter 7 discusses the use of digital computers in ultrasonic NDT. Experimental equipment used to test cross-correlation detection of ultrasonic signals is described in Chapter 8. Chapter 9 summarises the conclusions drawn during this investigation.
Resumo:
This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;
Resumo:
Signal resolution in H NMR is limited primarily by multiplet structure. Recent advances in pure shift NMR, in which the effects of homonuclear couplings are suppressed, have allowed this limitation to be circumvented in 1D NMR, gaining almost an order of magnitude in spectral resolution. Here for the first time an experiment is demonstrated that suppresses multiplet structure in both domains of a homonuclear two-dimensional spectrum. The principle is demonstrated for the TOCSY experiment, generating a chemical shift correlation map in which a single peak is seen for each coupled relationship, but the principle is general and readily extensible to other homonuclear correlation experiments. Such spectra greatly simplify manual spectral analysis and should be well-suited to automated methods for structure elucidation. © 2010 American Chemical Society.
Resumo:
This article examines whether UK portfolio returns are time varying so that expected returns follow an AR(1) process as proposed by Conrad and Kaul for the USA. It explores this hypothesis for four portfolios that have been formed on the basis of market capitalization. The portfolio returns are modelled using a kalman filter signal extraction model in which the unobservable expected return is the state variable and is allowed to evolve as a stationary first order autoregressive process. It finds that this model is a good representation of returns and can account for most of the autocorrelation present in observed portfolio returns. This study concludes that UK portfolio returns are time varying and the nature of the time variation appears to introduce a substantial amount of autocorrelation to portfolio returns. Like Conrad and Kaul if finds a link between the extent to which portfolio returns are time varying and the size of firms within a portfolio but not the monotonic one found for the USA. © 2004 Taylor and Francis Ltd.
Resumo:
The local image representation produced by early stages of visual analysis is uninformative regarding spatially extensive textures and surfaces. We know little about the cortical algorithm used to combine local information over space, and still less about the area over which it can operate. But such operations are vital to support perception of real-world objects and scenes. Here, we deploy a novel reverse-correlation technique to measure the extent of spatial pooling for target regions of different areas placed either in the central visual field, or more peripherally. Stimuli were large arrays of micropatterns, with their contrasts perturbed individually on an interval-by-interval basis. By comparing trial-by-trial observer responses with the predictions of computational models, we show that substantial regions (up to 13 carrier cycles) of a stimulus can be monitored in parallel by summing contrast over area. This summing strategy is very different from the more widely assumed signal selection strategy (a MAX operation), and suggests that neural mechanisms representing extensive visual textures can be recruited by attention. We also demonstrate that template resolution is much less precise in the parafovea than in the fovea, consistent with recent accounts of crowding. © 2014 The Authors.
Resumo:
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
Resumo:
We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.