984 resultados para Signal classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Task classification is introduced as a method for the evaluation of monitoring behaviour in different task situations. On the basis of an analysis of different monitoring tasks, a task classification system comprising four task 'dimensions' is proposed. The perceptual speed and flexibility of closure categories, which are identified with signal discrimination type, comprise the principal dimension in this taxonomy, the others being sense modality, the time course of events, and source complexity. It is also proposed that decision theory provides the most complete method for the analysis of performance in monitoring tasks. Several different aspects of decision theory in relation to monitoring behaviour are described. A method is also outlined whereby both accuracy and latency measures of performance may be analysed within the same decision theory framework. Eight experiments and an organizational study are reported. The results show that a distinction can be made between the perceptual efficiency (sensitivity) of a monitor and his criterial level of response, and that in most monitoring situations, there is no decrement in efficiency over the work period, but an increase in the strictness of the response criterion. The range of tasks exhibiting either or both of these performance trends can be specified within the task classification system. In particular, it is shown that a sensitivity decrement is only obtained for 'speed' tasks with a high stimulation rate. A distinctive feature of 'speed' tasks is that target detection requires the discrimination of a change in a stimulus relative to preceding stimuli, whereas in 'closure' tasks, the information required for the discrimination of targets is presented at the same point In time. In the final study, the specification of tasks yielding sensitivity decrements is shown to be consistent with a task classification analysis of the monitoring literature. It is also demonstrated that the signal type dimension has a major influence on the consistency of individual differences in performance in different tasks. The results provide an empirical validation for the 'speed' and 'closure' categories, and suggest that individual differences are not completely task specific but are dependent on the demands common to different tasks. Task classification is therefore shovn to enable improved generalizations to be made of the factors affecting 1) performance trends over time, and 2) the consistencv of performance in different tasks. A decision theory analysis of response latencies is shown to support the view that criterion shifts are obtained in some tasks, while sensitivity shifts are obtained in others. The results of a psychophysiological study also suggest that evoked potential latency measures may provide temporal correlates of criterion shifts in monitoring tasks. Among other results, the finding that the latencies of negative responses do not increase over time is taken to invalidate arousal-based theories of performance trends over a work period. An interpretation in terms of expectancy, however, provides a more reliable explanation of criterion shifts. Although the mechanisms underlying the sensitivity decrement are not completely clear, the results rule out 'unitary' theories such as observing response and coupling theory. It is suggested that an interpretation in terms of the memory data limitations on information processing provides the most parsimonious explanation of all the results in the literature relating to sensitivity decrement. Task classification therefore enables the refinement and selection of theories of monitoring behaviour in terms of their reliability in generalizing predictions to a wide range of tasks. It is thus concluded that task classification and decision theory provide a reliable basis for the assessment and analysis of monitoring behaviour in different task situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. RESULTS: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This study was supported in part by the Natural Sciences and Engineering Research Council of Canada, and by the Gastrointestinal Motility Laboratory (University of Alberta Hospitals) in Edmonton, Alberta, Canada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification.

In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information.

In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data.

Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear.

We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrestrial remote sensing imagery involves the acquisition of information from the Earth's surface without physical contact with the area under study. Among the remote sensing modalities, hyperspectral imaging has recently emerged as a powerful passive technology. This technology has been widely used in the fields of urban and regional planning, water resource management, environmental monitoring, food safety, counterfeit drugs detection, oil spill and other types of chemical contamination detection, biological hazards prevention, and target detection for military and security purposes [2-9]. Hyperspectral sensors sample the reflected solar radiation from the Earth surface in the portion of the spectrum extending from the visible region through the near-infrared and mid-infrared (wavelengths between 0.3 and 2.5 µm) in hundreds of narrow (of the order of 10 nm) contiguous bands [10]. This high spectral resolution can be used for object detection and for discriminating between different objects based on their spectral xharacteristics [6]. However, this huge spectral resolution yields large amounts of data to be processed. For example, the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [11] collects a 512 (along track) X 614 (across track) X 224 (bands) X 12 (bits) data cube in 5 s, corresponding to about 140 MBs. Similar data collection ratios are achieved by other spectrometers [12]. Such huge data volumes put stringent requirements on communications, storage, and processing. The problem of signal sbspace identification of hyperspectral data represents a crucial first step in many hypersctral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction (DR) yelding gains in data storage and retrieval and in computational time and complexity. Additionally, DR may also improve algorithms performance since it reduce data dimensionality without losses in the useful signal components. The computation of statistical estimates is a relevant example of the advantages of DR, since the number of samples required to obtain accurate estimates increases drastically with the dimmensionality of the data (Hughes phnomenon) [13].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive radio (CR) was developed for utilizing the spectrum bands efficiently. Spectrum sensing and awareness represent main tasks of a CR, providing the possibility of exploiting the unused bands. In this thesis, we investigate the detection and classification of Long Term Evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) signals, which are used in uplink LTE, with applications to cognitive radio. We explore the second-order cyclostationarity of the LTE SC-FDMA signals, and apply results obtained for the cyclic autocorrelation function to signal detection and classification (in other words, to spectrum sensing and awareness). The proposed detection and classification algorithms provide a very good performance under various channel conditions, with a short observation time and at low signal-to-noise ratios, with reduced complexity. The validity of the proposed algorithms is verified using signals generated and acquired by laboratory instrumentation, and the experimental results show a good match with computer simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.