926 resultados para Sigmoidal neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics and the transition of spiral waves in the coupled Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient D', is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for culturing medulla terminalis (MT) neurons in the eyestalk of Chinese shrimp, Fenneropenaeus chinensis, was first established. The neurons showed immediate outgrowth in the culture medium supplemented with glutamine, glucose and antibiotics. The cells grew for about 2-7 days and then sustained for a week or more. At least six types of neurons were distinguished on the basis of size and form of soma and outgrowth pattern of cells. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent electrophysical data inspired the claim that dopaminergic neurons adapt their mismatch sensitivities to reflect variances of expected rewards. This contradicts reward prediction error theory and most basal ganglia models. Application of learning principles points to a testable alternative interpretation-of the same data-that is compatible with existing theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ventral midbrain (VM) dopaminergic (DA) neurons, which project to the dorsal striatum via the nigrostriatal pathway, are progressively degenerated in Parkinson’s disease (PD). The identification of the instructive factors that regulate midbrain DA neuron development, and the subsequent elucidation of the molecular bases of their effects, is vital. Such an understanding would facilitate the generation of transplantable DA neurons from stem cells and the identification of developmentally-relevant neurotrophic factors, the two most promising therapeutic approaches for PD. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth/differentiation factor (GDF) 5, which signal via a canonical Smad 1/5/8 signalling pathway, have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo, and may function to regulate VM DA neuronal development. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. The present thesis hypothesised that canonical Smad signalling mediates the direct effects of BMP2 and GDF5 on the development of VM DA neurons. By activating, modulating and/or inhibiting various components of the BMP-Smad signalling pathway, this research demonstrated that GDF5- and BMP2-induced neurite outgrowth from midbrain DA neurons is dependent on BMP type I receptor activation of the Smad signalling pathway. The role of glial cell-line derived neurotrophic factor (GDNF)-signalling, dynamin-dependent endocytosis and Smad interacting protein-1 (Sip1) regulation, in the neurotrophic effects of BMP2 and GDF5 were determined. Finally, the in vitro development of VM neural stem cells (NSCs) was characterised, and the ability of GDF5 and BMP2 to induce these VM NSCs towards DA neuronal differentiation was investigated. Taken together, these experiments identify GDF5 and BMP2 as novel regulators of midbrain DA neuronal induction and differentiation, and demonstrate that their effects on DA neurons are mediated by canonical BMPR-Smad signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perceiving or producing complex vocalizations such as speech and birdsongs require the coordinated activity of neuronal populations, and these activity patterns can vary over space and time. How learned communication signals are represented by populations of sensorimotor neurons essential to vocal perception and production remains poorly understood. Using a combination of two-photon calcium imaging, intracellular electrophysiological recording and retrograde tracing methods in anesthetized adult male zebra finches (Taeniopygia guttata), I addressed how the bird's own song and its component syllables are represented by the spatiotemporal patterns of activity of two spatially intermingled populations of projection neurons (PNs) in HVC, a sensorimotor area required for song perception and production. These experiments revealed that neighboring PNs can respond at markedly different times to song playback and that different syllables activate spatially intermingled HVC PNs within a small region. Moreover, noise correlation analysis reveals enhanced functional connectivity between PNs that respond most strongly to the same syllable and also provides evidence of a spatial gradient of functional connectivity specific to PNs that project to song motor nucleus (i.e. HVCRA cells). These findings support a model in which syllabic and temporal features of song are represented by spatially intermingled PNs functionally organized into cell- and syllable-type networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. Although their choosiness toward egg-laying sites is well documented, the specific neural mechanism that activates females' search for attractive egg-laying sites is not known. Here, we show that distention and contraction of females' internal reproductive tract triggered by egg delivery through the tract plays a critical role in activating such search. We found that females start to exhibit acetic acid (AA) attraction prior to depositing each egg but no attraction when they are not laying eggs. Artificially distending the reproductive tract triggers AA attraction in non-egg-laying females, whereas silencing the mechanosensitive neurons we identified that can sense the contractile status of the tract eliminates such attraction. Our work uncovers the circuit basis of an important reproductive need of Drosophila females and provides a simple model for dissecting the neural mechanism that underlies a reproductive need-induced behavioral modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.