896 resultados para Short food supply chains
Resumo:
The paper reviews relevant literature studying the environmental impacts of food supply chain from production to each stage throughout the supply chain. With limited data and information, to better understand these impacts, a concrete example of the tea supply chain in China is provided. The tea supply chain is analyzed from the environmental prospective, with potential pollutants being identified at each stage of the supply chain. As an example of the food supply chain in a developing country, some unique features of the developing economies are taken into consideration when concluding the implications.
Resumo:
Increased globalization and outsourcing to developing countries is fostering the interest in supply chain sustainability. From the academic point of view, while environmental impacts of supply chains have been largely analysed, the research on social issues has been scattered and fragmented. This paper thereby sets out to close this gap. We have identified an emerging sphere of knowledge at the interface between sustainable supply chain management, business strategy and international development literature, which seeks to propose innovative strategies for poverty alleviation. The incorporation of impoverished farmers into supply chains is presented here as one of those strategies, and illustrated through a case study on the integration of these farmers in the Senegalese horticulture supply chain.
Resumo:
This PhD dissertation is framed in the emergent fields of Reverse Logistics and ClosedLoop Supply Chain (CLSC) management. This subarea of supply chain management has gained researchers and practitioners' attention over the last 15 years to become a fully recognized subdiscipline of the Operations Management field. More specifically, among all the activities that are included within the CLSC area, the focus of this dissertation is centered in direct reuse aspects. The main contribution of this dissertation to current knowledge is twofold. First, a framework for the so-called reuse CLSC is developed. This conceptual model is grounded in a set of six case studies conducted by the author in real industrial settings. The model has also been contrasted with existing literature and with academic and professional experts on the topic as well. The framework encompasses four building blocks. In the first block, a typology for reusable articles is put forward, distinguishing between Returnable Transport Items (RTI), Reusable Packaging Materials (RPM), and Reusable Products (RP). In the second block, the common characteristics that render reuse CLSC difficult to manage from a logistical standpoint are identified, namely: fleet shrinkage, significant investment and limited visibility. In the third block, the main problems arising in the management of reuse CLSC are analyzed, such as: (1) define fleet size dimension, (2) control cycle time and promote articles rotation, (3) control return rate and prevent shrinkage, (4) define purchase policies for new articles, (5) plan and control reconditioning activities, and (6) balance inventory between depots. Finally, in the fourth block some solutions to those issues are developed. Firstly, problems (2) and (3) are addressed through the comparative analysis of alternative strategies for controlling cycle time and return rate. Secondly, a methodology for calculating the required fleet size is elaborated (problem (1)). This methodology is valid for different configurations of the physical flows in the reuse CLSC. Likewise, some directions are pointed out for further development of a similar method for defining purchase policies for new articles (problem (4)). The second main contribution of this dissertation is embedded in the solutions part (block 4) of the conceptual framework and comprises a two-level decision problem integrating two mixed integer linear programming (MILP) models that have been formulated and solved to optimality using AIMMS as modeling language, CPLEX as solver and Excel spreadsheet for data introduction and output presentation. The results obtained are analyzed in order to measure in a client-supplier system the economic impact of two alternative control strategies (recovery policies) in the context of reuse. In addition, the models support decision-making regarding the selection of the appropriate recovery policy against the characteristics of demand pattern and the structure of the relevant costs in the system. The triangulation of methods used in this thesis has enabled to address the same research topic with different approaches and thus, the robustness of the results obtained is strengthened.
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.
Resumo:
Published in 1929 under title: Agricultural and mineral production in Japan.
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
Purpose - To develop a systems strategy for supply chain management in aerospace maintenance, repair and overhaul (MRO). Design/methodology/approach - A standard systems development methodology has been followed to produce a process model (i.e. the AMSCR model); an information model (i.e. business rules) and a computerised information management capability (i.e. automated optimisation). Findings - The proof of concept for this web-based MRO supply chain system has been established through collaboration with a sample of the different types of supply chain members. The proven benefits comprise new potential to minimise the stock holding costs of the whole supply chain whilst also minimising non-flying time of the aircraft that the supply chain supports. Research limitations/implications - The scale of change needed to successfully model and automate the supply chain is vast. This research is a limited-scale experiment intended to show the power of process analysis and automation, coupled with strategic use of management science techniques, to derive tangible business benefit. Practical implications - This type of system is now vital in an industry that has continuously decreasing profit margins; which in turn means pressure to reduce servicing times and increase the mean time between them. Originality/value - Original work has been conducted at several levels: process, information and automation. The proof-of-concept system has been applied to an aircraft MRO supply chain. This is an area of research that has been neglected, and as a result is not well served by current systems solutions. © Emerald Group Publishing Limited.
Resumo:
In global environment, a company has to make many decisions that impact upon its position in global supply chain networks such as outsourcing, offshoring, joint venture, vertical/horizontal integration, etc. All these decisions impact on the company’s strategic position, and hence on competitive space and performance. Therefore, it is important for a company to carefully manage strategic positioning by making careful decisions about the adoption of alternative manufacturing and supply chain activities. Unfortunately, there is no complete process studied in strategic positioning of manufacturing operations within global supply chain. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.