997 resultados para Sheet-steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there is a significant effort into developing novel multiphase microstructures to further improve the strength/ductility combination of advanced high-strength steels. To achieve this, the effect of the microstructure on sheet formability needs to be further understood. In this study, the effect of the microstructure on the variation of the elastic modulus in loading and unloading of DP 780 steel has been investigated. Five microstructures with varying volume fractions of ferrite and martensite were generated using different heat treatment cycles. Tension tests were performed to different strain values and the Young’s Modulus during loading and unloading was determined. The test results show that the reduction in unloading modulus with prestrain depends on the volume fraction and hardness of the martensitic phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to develop a kinematic hardening effect graph (KHEG) which can be used to evaluate the effect of kinematic hardening on the model accuracy of numerical sheet metal forming simulations and this without the need of complex material characterisation. The virtual manufacturing process design and optimisation depends on the accuracy of the constitutive models used to represent material behaviour. Under reverse strain paths the Bauschinger effect phenomenon is modelled using kinematic hardening models. However, due to the complexity of the experimental testing required to characterise this phenomenon in this work the KHEG is presented as an indicator to evaluate the potential benefit of carrying out these tests. The tool is validated with the classic three point bending process and the U-channel width drawbead process. In the same way, the capability of the KHEG to identify effects in forming processes that do not include forming strain reversals is identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill’s 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill’s 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger’s effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multistage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-phase structure of a novel low-alloy transformation induced plasticity (TRIP) steel was designed through experimental analysis. The evolutions of both microstructure and mechanical properties during the two-stage heat treatment were analyzed. The phase transformations during the intercritical annealing and the isothermal bainitic transformation were investigated by means of dilatometry. It was shown that two types of C diffusion were detected during intercritical annealing and a complex microstructure was formed after heat treatment. The processing parameters were selected in such a way to obtain microstructures with systematically different volume fractions of ferrite, bainite and retained austenite. The volume fractions of ferrite and retained austenite were found to be two main factors controlling the ductility. Furthermore, a high volume fraction of C-rich retained austenite, which was stabilized at room temperature, was the origin of a TRIP effect. The resulting material demonstrates a significant improvement in the ultimate tensile strength (1077. MPa) with good uniform elongation (22.5%), as compared to conventional TRIP steels. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A material model for more thorough analysis of plastic deformation of sheet materials is presented in this paper. This model considers the following aspects of plastic deformation behavior of sheet materials: (1) the anisotropy in yield stresses and in work hardening by using Hill's 1948 quadratic yield function and non-constant stress ratios which leads to different flow stress hardening in different directions, (2) the anisotropy in plastic strains by using a quadratic plastic potential function and non-associated flow rule, also based on Hill's 1948 model and r-values, and (3) the cyclic hardening phenomena such as the Bauschinger effect, permanent softening and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening model. Plasticity fundamentals of the model were derived in a general framework and the model calibration procedure was presented for the plasticity formulations. Also, a generic numerical stress integration procedure was developed based on backward-Euler method, so-called multi-stage return mapping algorithm. The model was implemented in the framework of the finite element method to evaluate the simulation results of sheet metal forming processes. Different aspects of the model were verified for two sheet metals, namely DP600 steel and AA6022 aluminum alloy. Results show that the new model is able to accurately predict the sheet material behavior for both anisotropic hardening and cyclic hardening conditions. The drawing of channel sections and the subsequent springback were also simulated with this model for different drawbead configurations. Simulation results show that the current non-associated anisotropic hardening model is able to accurately predict the sidewall curl in the drawn channel sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent experiment confirmed that the infrared (IR) local heating method drastically reduces springback of dual-phase (DP) 980 sheets. In the experiment, only the plastic deformation zone of the sheets was locally heated using condensed IR heating. The heated sheets were then deformed by V-bending or 2D-draw bending. Although the experimental observation proved the merit of using the IR local heating to reduce springback, numerical modeling has not been reported. Numerical modeling has been required to predict springback and improve the understanding of the forming process. This paper presents a numerical modeling for V-bending and 2D-draw bending of DP 980 sheets exposed to the IR local heating with the finite element method (FEM). For describing the thermo-mechanical behavior of the DP 980 sheet, a flow stress model which includes a function of temperature and effective plastic strain was newly implemented into Euler-backward stress integration method. The numerical analysis shows that the IR local heating reduces the level of stress in the deformation zone, although it heats only the limited areas, and then it reduces the springback. The simulation also provides a support that the local heating method has an advantage of shape accuracy over the method to heat the material as a whole in V-bending. The simulated results of the springback in both V-bending and 2D-draw bending also show good predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient implementation of recycling networks requires appropriate logistical structures for managing the reverse flow of materials from users to producers. The steel sheet distributor studied had established a protocol for scrap recovery with the steel plant and its customers. The company invested in producing containers, hiring a specialized labor force and in purchasing trucks for container transportation to implement the logistics network for recycling. That network interconnected the company with two kinds of customers: the ones returning scrap and the ones who preferred to continue business-as-usual. The logistical network was analyzed using emergy synthesis, and the data obtained were used to evaluate and compare the system's environmental costs and benefits from the perspective of the distributor and the steel plant operator. The use of emergy ternary diagrams provided a way to assess recycle strategies to compare the relative economic and environmental benefits of the logistical network implemented. The minimum quantity of scrap that the distributor must recover to improve environmental benefits was determined allowing decision on whether it is worth keeping the system running. The new assessment method proposed also may help policy-makers to create strategies to reward or incentive users of reverse logistics, and help to establish regulations, by decreasing taxes or stimulating innovation, for effectively implement the National Policy on Solid Waste. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The galvanic corrosion of magnesium alloy AZ91D coupled to a steel fastener was studied using a boundary element method (BEM) model and experimental measurements. The BEM model used the measured polarization curves as boundary conditions. The experimental program involved measuring the total corrosion rate as a function of distance from the interface of the magnesium in the form of a sheet containing a mild steel circular insert (5 to 30 mm in diameter). The measured total corrosion rate was interpreted as due to galvanic corrosion plus self corrosion. For a typical case, the self corrosion was estimated typically to be similar to 230 mm/y for an area surrounding the interface and to a distance of about I cm from the interface. Scanning Kelvin Probe Force Microscopy (SKPFM) revealed microgalvanic cells with potential differences of approximately 100 mV across the AZ91D surface. These microgalvanic cells may influence the relative contributions of galvanic and self corrosion to the total corrosion of AZ91D.