808 resultados para Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)
Resumo:
Background
Studies in animals and in vitro and phase 2 studies in humans suggest that statins may be beneficial in the treatment of the acute respiratory distress syndrome (ARDS). This study tested the hypothesis that treatment with simvastatin would improve clinical outcomes in patients with ARDS.
Methods
In this multicenter, double-blind clinical trial, we randomly assigned (in a 1:1 ratio) patients with an onset of ARDS within the previous 48 hours to receive enteral simvastatin at a dose of 80 mg or placebo once daily for a maximum of 28 days. The primary outcome was the number of ventilator-free days to day 28. Secondary outcomes included the number of days free of nonpulmonary organ failure to day 28, mortality at 28 days, and safety.
Results
The study recruited 540 patients, with 259 patients assigned to simvastatin and 281 to placebo. The groups were well matched with respect to demographic and baseline physiological variables. There was no significant difference between the study groups in the mean (±SD) number of ventilator-free days (12.6±9.9 with simvastatin and 11.5±10.4 with placebo, P=0.21) or days free of nonpulmonary organ failure (19.4±11.1 and 17.8±11.7, respectively; P=0.11) or in mortality at 28 days (22.0% and 26.8%, respectively; P=0.23). There was no significant difference between the two groups in the incidence of serious adverse events related to the study drug.
Conclusions
Simvastatin therapy, although safe and associated with minimal adverse effects, did not improve clinical outcomes in patients with ARDS. (Funded by the U.K. National Institute for Health Research Efficacy and Mechanism Evaluation Programme and others; HARP-2 Current Controlled Trials number, ISRCTN88244364.)
Resumo:
Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen in cases of atypical pneumonia. Most individuals with Mycoplasma pneumonia run a benign course, with non-specific symptoms of malaise, fever and non-productive cough that usually resolve with no long-term sequelae. Acute lung injury is not commonly seen in Mycoplasma pneumonia. We report a case of acute respiratory distress syndrome cause by M. pneumoniae diagnosed by quantitative real-time polymerase chain reaction (RT-PCR).
Resumo:
INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a common clinical syndrome with high mortality and long-term morbidity. To date there is no effective pharmacological therapy. Aspirin therapy has recently been shown to reduce the risk of developing ARDS, but the effect of aspirin on established ARDS is unknown.
METHODS: In a single large regional medical and surgical ICU between December 2010 and July 2012, all patients with ARDS were prospectively identified and demographic, clinical, and laboratory variables were recorded retrospectively. Aspirin usage, both pre-hospital and during intensive care unit (ICU) stay, was included. The primary outcome was ICU mortality. We used univariate and multivariate logistic regression analyses to assess the impact of these variables on ICU mortality.
RESULTS: In total, 202 patients with ARDS were included; 56 (28%) of these received aspirin either pre-hospital, in the ICU, or both. Using multivariate logistic regression analysis, aspirin therapy, given either before or during hospital stay, was associated with a reduction in ICU mortality (odds ratio (OR) 0.38 (0.15 to 0.96) P = 0.04). Additional factors that predicted ICU mortality for patients with ARDS were vasopressor use (OR 2.09 (1.05 to 4.18) P = 0.04) and APACHE II score (OR 1.07 (1.02 to 1.13) P = 0.01). There was no effect upon ICU length of stay or hospital mortality.
CONCLUSION: Aspirin therapy was associated with a reduced risk of ICU mortality. These data are the first to demonstrate a potential protective role for aspirin in patients with ARDS. Clinical trials to evaluate the role of aspirin as a pharmacological intervention for ARDS are needed.
Resumo:
Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.
Resumo:
In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.
Resumo:
Rationale: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Whilst IL-17A is the archetypal cytokine of T helper (Th)17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown.
Objectives: To identify the cellular source and the role of IL17A in the early phase of lung injury
Methods: Lung injury was induced in WT (C57BL/6) and IL-17 KO mice with aerosolised LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was carried out by flow cytometry.
Measurement and Main Results: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared to wild type (WT) mice. The majority of RORγt+ cells in the mouse lung were the recently identified type 3 innate lymphoid cells (ILC3). Detailed characterisation revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in Rag2 KO mice which lack T cells but retain ILCs. No amelioration of pathology was observed in the Rag2 KO mice.
Conclusions: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3 cells. Modulation of pILC3s’ activity may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.
Resumo:
Sepsis is a common condition that is associated with significant morbidity, mortality and health-care cost. Pulmonary and non-pulmonary sepsis are common causes of the acute respiratory distress syndrome (ARDS). The mortality from ARDS remains high despite protective lung ventilation, and currently there are no specific pharmacotherapies to treat sepsis or ARDS. Sepsis and ARDS are characterised by activation of the inflammatory cascade. Although there is much focus on the study of the dysregulated inflammation and its suppression, the associated activation of the haemostatic system has been largely ignored until recently. There has been extensive interest in the role that platelet activation can have in the inflammatory response through induction, aggregation and activation of leucocytes and other platelets. Aspirin can modulate multiple pathogenic mechanisms implicated in the development of multiple organ dysfunction in sepsis and ARDS. This review will discuss the role of the platelet, the mechanisms of action of aspirin in sepsis and ARDS, and aspirin as a potential therapy in treating sepsis and ARDS.
Resumo:
Background
Fluid administration to critically ill patients remains the subject of considerable controversy. While intravenous fluid given for resuscitation may be life-saving, a positive fluid balance over time is associated with worse outcomes in critical illness. The aim of this systematic review is to summarise the existing evidence regarding the relationship between fluid administration or balance and clinically important patient outcomes in critical illness.
Methods
We will search Medline, EMBASE, the Cochrane Central Register of Controlled Trials from 1980 to the present and key conference proceedings from 2009 to the present. We will include studies of critically ill adults and children with acute respiratory distress syndrome (ARDS), sepsis and systemic inflammatory response syndrome (SIRS). We will include randomised controlled trials comparing two or more fluid regimens of different volumes of fluid and observational studies reporting the relationship between volume of fluid administered or fluid balance and outcomes including mortality, lengths of intensive care unit and hospital stay and organ dysfunction. Two independent reviewers will assess articles for eligibility, data extraction and quality appraisal. We will conduct a narrative and/or meta-analysis as appropriate.
Discussion
While fluid management has been extensively studied and discussed in the critical care literature, no systematic review has attempted to summarise the evidence for post-resuscitation fluid strategies in critical illness. Results of the proposed systematic review will inform practice and the design of future clinical trials.
Systematic review registration
PROSPERO CRD42013005608. (http://www.crd.york.ac.uk/PROSPERO/)
Resumo:
OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Resumo:
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is a frequent respiratory disturbance in preterm newborns. Preceding investigations evaluated chronic physiotherapy effects on newborns with different lung diseases; however, no study analyzed acute physiotherapy treatment on premature newborns with ARDS. In this study we aimed to evaluate the acute effects of chest and motor physiotherapy treatment on hemodynamic variables in preterm newborns with ARDS. Methods: We evaluated heart rate (HR), respiratory rate (RR), systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP), temperature and oxygen saturation (SO(2)%) in 44 newborns with ARDS. We compared all variables between six periods in one day: before first physiotherapy treatment vs. after first physiotherapy treatment vs. before second physiotherapy treatment vs. after second physiotherapy treatment vs. before third physiotherapy treatment vs. after third physiotherapy treatment. Variables were measured 2 minutes before and 5 minutes after each physiotherapy session. We applied Anova one way followed by post hoc Bonferroni test. Results: HR (147.5 +/- 9.5 bpm vs. 137.7 +/- 9.3 bpm; p<0.001), RR (45.5 +/- 8.7cpm vs. 41.5 +/- 6.7 cpm; p=0.001), SAP (70.3 +/- 10.4 mmHg vs. 60.1 +/- 7.1 mmHg; p=0.001) and MAP (55.7 +/- 10 mmHg vs. 46 +/- 6.6 mmHg; p=0.001) were significantly reduced after the third physiotherapy treatment compared to before the first session. There were no significant changes regarding temperature, DAP and SO(2) %. Conclusion: Chest and motor physiotherapy acutely improves HR, RR, SAP, MAP and SO(2) % in newborns with ARDS.
Resumo:
In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.
Resumo:
Purpose of reviewLung ultrasound at the bedside can provide accurate information on lung status in critically ill patients with acute respiratory distress syndrome.Recent findingsLung ultrasound can replace bedside chest radiography and lung computed tomography for assessment of pleural effusion, pneumothorax, alveolar- interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/de-recruitment. It can also accurately determine the type of lung morphology at the bedside (focal or diffuse aeration loss), and therefore it is useful for optimizing positive end-expiratory pressure. The learning curve is brief, so most intensive care physicians will be able to use it after a few weeks of training.SummaryLung ultrasound is noninvasive, easily repeatable and allows assessment of changes in lung aeration induced by the various therapies. It is among the most promising bedside techniques for monitoring patients with acute respiratory distress syndrome.
Resumo:
Aim. To establish a protocol for the early introduction of inhaled nitric oxide (iNO) therapy in children with acute respiratory distress syndrome (ARDS) and to assess its acute and sustained effects on oxygenation and ventilator settings.Patients and Methods. Ten children with ARDS, aged 1 to 132 months (median, 11 months), with arterial saturation of oxygen <88% while receiving a fraction of inspired oxygen (FiO(2))