972 resultados para Service life (Engineering)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fretting fatigue occurs when the contact surfaces of two components undergo small oscillatory movement while they are subjected to a clamping force. A cyclic external load gives rise to the early initiation of fatigue cracks, thus reducing their service life. In this paper, the fretting fatigue behaviour of commercially pure titanium flat samples (1.5 mm thick) is evaluated. A fretting device composed of a frame, load cell, and two screw-mounted cylindrical fretting pads with convex extremities was built and set to a servo-hydraulic testing machine. The fatigue tests were conducted under load control at a frequency of 10 Hz and stress ratio R = 0.1, with various contact load values applied to the fretting pads. Additional tests under inert environment allowed assessing the role of oxidation on the wear debris formation. The fracture surfaces and fretting scars were analysed via scanning electron microscopy in order to evaluate the surface damage evolution and its effect on the fatigue crack features. The effect of the fretting condition on the S-N curve of the material in the range of 10(4)-10(6) cycles is described. Fatigue crack growth calculations allowed estimating the crack initiation and propagation lives under fretting conditions. The effect of the fretting condition in fatigue life is stronger for the lower values of cyclic stress and does not seem to depend on the contact loading value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Asset Management (AM) is a set of procedures operable at the strategic-tacticaloperational level, for the management of the physical asset’s performance, associated risks and costs within its whole life-cycle. AM combines the engineering, managerial and informatics points of view. In addition to internal drivers, AM is driven by the demands of customers (social pull) and regulators (environmental mandates and economic considerations). AM can follow either a top-down or a bottom-up approach. Considering rehabilitation planning at the bottom-up level, the main issue would be to rehabilitate the right pipe at the right time with the right technique. Finding the right pipe may be possible and practicable, but determining the timeliness of the rehabilitation and the choice of the techniques adopted to rehabilitate is a bit abstruse. It is a truism that rehabilitating an asset too early is unwise, just as doing it late may have entailed extra expenses en route, in addition to the cost of the exercise of rehabilitation per se. One is confronted with a typical ‘Hamlet-isque dilemma’ – ‘to repair or not to repair’; or put in another way, ‘to replace or not to replace’. The decision in this case is governed by three factors, not necessarily interrelated – quality of customer service, costs and budget in the life cycle of the asset in question. The goal of replacement planning is to find the juncture in the asset’s life cycle where the cost of replacement is balanced by the rising maintenance costs and the declining level of service. System maintenance aims at improving performance and maintaining the asset in good working condition for as long as possible. Effective planning is used to target maintenance activities to meet these goals and minimize costly exigencies. The main objective of this dissertation is to develop a process-model for asset replacement planning. The aim of the model is to determine the optimal pipe replacement year by comparing, temporally, the annual operating and maintenance costs of the existing asset and the annuity of the investment in a new equivalent pipe, at the best market price. It is proposed that risk cost provide an appropriate framework to decide the balance between investment for replacing or operational expenditures for maintaining an asset. The model describes a practical approach to estimate when an asset should be replaced. A comprehensive list of criteria to be considered is outlined, the main criteria being a visà- vis between maintenance and replacement expenditures. The costs to maintain the assets should be described by a cost function related to the asset type, the risks to the safety of people and property owing to declining condition of asset, and the predicted frequency of failures. The cost functions reflect the condition of the existing asset at the time the decision to maintain or replace is taken: age, level of deterioration, risk of failure. The process model is applied in the wastewater network of Oslo, the capital city of Norway, and uses available real-world information to forecast life-cycle costs of maintenance and rehabilitation strategies and support infrastructure management decisions. The case study provides an insight into the various definitions of ‘asset lifetime’ – service life, economic life and physical life. The results recommend that one common value for lifetime should not be applied to the all the pipelines in the stock for investment planning in the long-term period; rather it would be wiser to define different values for different cohorts of pipelines to reduce the uncertainties associated with generalisations for simplification. It is envisaged that more criteria the municipality is able to include, to estimate maintenance costs for the existing assets, the more precise will the estimation of the expected service life be. The ability to include social costs enables to compute the asset life, not only based on its physical characterisation, but also on the sensitivity of network areas to social impact of failures. The type of economic analysis is very sensitive to model parameters that are difficult to determine accurately. The main value of this approach is the effort to demonstrate that it is possible to include, in decision-making, factors as the cost of the risk associated with a decline in level of performance, the level of this deterioration and the asset’s depreciation rate, without looking at age as the sole criterion for making decisions regarding replacements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

What motivates students to perform and pursue engineering design tasks? This study examines this question by way of three Learning Through Service (LTS) programs: 1) an on-going longitudinal study examining the impacts of service on engineering students, 2) an on-going analysis of an international senior design capstone program, and 3) an on-going evaluation of an international graduate-level research program. The evaluation of these programs incorporates both qualitative and quantitative methods, utilizing surveys, questionnaires, and interviews, which help to provide insight on what motivates students to do engineering design work. The quantitative methods were utilized in analyzing various instruments including: a Readiness assessment inventory, Intercultural Development Inventory, Sustainable Engineering through Service Learning survey, the Impacts of Service on Engineering Students’ survey, Motivational narratives, as well as some analysis for interview text. The results of these instruments help to provide some much needed insight on how prepared students are to participate in engineering programs. Additional qualitative methods include: Word clouds, Motivational narratives, as well as interview analysis. This thesis focused on how these instruments help to determine what motivates engineering students to pursue engineering design tasks. These instruments aim to collect some more in-depth information than the quantitative instruments will allow. Preliminary results suggest that of the 120 interviews analyzed Interest/Enjoyment, Application of knowledge and skills, as well as gaining knowledge are key motivating factors regardless of gender or academic level. Together these findings begin to shed light on what motivates students to perform engineering design tasks, which can be applied for better recruitment and retention in university programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Moisture induced distresses have been the prevalent distress type affecting the deterioration of both asphalt and concrete pavement sections. While various surface techniques have been employed over the years to minimize the ingress of moisture into the pavement structural sections, subsurface drainage components like open-graded base courses remain the best alternative in minimizing the time the pavement structural sections are exposed to saturated conditions. This research therefore focuses on assessing the performance and cost-effectiveness of pavement sections containing both treated and untreated open-graded aggregate base materials. Three common roadway aggregates comprising of two virgin aggregates and one recycled aggregate were investigated using four open-ended gradations and two binder types. Laboratory tests were conducted to determine the hydraulic, mechanical and durability characteristics of treated and untreated open-graded mixes made from these three aggregate types. Results of the experimental program show that for the same gradation and mix design types, limestone samples have the greatest drainage capacity, stability to traffic loads and resistance to degradation from environmental conditions like freeze-thaw. However, depending on the gradation and mix design used, all three aggregate types namely limestone, natural gravel and recycled concrete can meet the minimum coefficient of hydraulic conductivity required for good drainage in most pavements. Tests results for both asphalt and cement treated open-graded samples indicate that a percent air void content within the range of 15-25 will produce a treated open-graded base course with sufficient drainage capacity and also long term stability under both traffic and environmental loads. Using the new Mechanistic and Empirical Design Guide software, computer simulations of pavement performance were conducted on pavement sections containing these open-graded base aggregate base materials to determine how the MEPDG predicted pavement performance is sensitive to drainage. Using three truck traffic levels and four climatic regions, results of the computer simulations indicate that the predicted performance was not sensitive to the drainage characteristics of the open-graded base course. Based on the result of the MEPDG predicted pavement performance, the cost-effectiveness of the pavement sections with open-graded base was computed on the assumption that the increase service life experienced by these sections was attributed to the positive effects of subsurface drainage. The two cost analyses used gave two contrasting results with the one indicating that the inclusion of open-graded base courses can lead to substantial savings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers (e.g., MNO, MVNO) move from proprietary and bespoke hardware and software platforms toward an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently created through cloudification by leveraging the existing infrastructure. In this work, we present RANaaS, which is a cloudified radio access network delivered as a service. RANaaS provides the service life-cycle of an ondemand, elastic, and pay as you go 3GPP RAN instantiated on top of the cloud infrastructure. We demonstrate an example of realtime cloudified LTE network deployment using the OpenAirInterface LTE implementation and OpenStack running on commodity hardware as well as the flexibility and performance of the platform developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freezing of water or salt solution in concrete pores is a main cause for severe damage and significant reduction of the service life. Most of the freeze-thaw (F-T) accelerated tests measure the scaling of concrete by weighting. This paper presents complementary procedures based on the use of strain gages and ultrasonic pulse velocity (UPV) for measuring the deterioration of concrete due to freezing and thawing. These non-destructive testing (NDT) procedures are applied to two types of concretes, one susceptible to F-T damage and the other does not. The results show a good correlation between scaling and the measurements obtained with NDT. Showing NDT the advantage to detect before the damage and to perform continuous measurement

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Waste produced during the service life of automobiles has received much less attention than end-of-life vehicles themselves. In this paper, we deal with the set up of a reverse logistics system for the collection and treatment of use-phase residues. First, the type of waste arising during vehicles? service life is characterized. Data were collected in collaboration with SIGRAUTO, the product stewardship organization in charge of vehicles? recovery in Spain. Next, three organizational models are proposed. The three alternatives are benchmarked and assessed from a double organizational and operational perspective for the particular case of the Madrid region in Spain

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La mayoría de las estructuras de hormigón pretensadas construidas en los últimos 50 años han demostrado una excelente durabilidad cuando su construcción se realiza atendiendo las recomendaciones de un buen diseño así como una buena ejecución y puesta en obra de la estructura. Este hecho se debe en gran parte al temor que despierta el fenómeno de la corrosión bajo tensión típico de las armaduras de acero de alta resistencia. Menos atención se ha prestado a la susceptibilidad a la corrosión bajo tensión de los anclajes de postensado, posiblemente debido a que se han reportado pocos casos de fallos catastróficos. El concepto de Tolerancia al Daño y la Mecánica de la Fractura en estructuras de Ingeniería Civil ha empezado a incorporarse recientemente en algunas normas de diseño y cálculo de estructuras metálicas, sin embargo, aún está lejos de ser asimilado y empleado habitualmente por los ingenieros en sus cálculos cuando la ocasión lo requiere. Este desconocimiento de los aspectos relacionados con la Tolerancia al Daño genera importantes gastos de mantenimiento y reparación. En este trabajo se ha estudiado la aplicabilidad de los conceptos de la Mecánica de la Fractura a los componentes de los sistemas de postensado empleados en ingeniería civil, empleándolo para analizar la susceptibilidad de las armaduras activas frente a la corrosión bajo tensiones y a la pérdida de capacidad portante de las cabezas de anclajes de postensado debido a la presencia de defectos. Con este objeto se han combinado tanto técnicas experimentales como numéricas. Los defectos superficiales en los alambres de pretensado no se presentan de manera aislada si no que existe una cierta continuidad en la dirección axial así como un elevado número de defectos. Por este motivo se ha optado por un enfoque estadístico, que es más apropiado que el determinístico. El empleo de modelos estadísticos basados en la teoría de valores extremos ha permitido caracterizar el estado superficial en alambres de 5,2 mm de diámetro. Por otro lado la susceptibilidad del alambre frente a la corrosión bajo tensión ha sido evaluada mediante la realización de una campaña de ensayos de acuerdo con la actual normativa que ha permitido caracterizar estadísticamente su comportamiento. A la vista de los resultados ha sido posible evaluar como los parámetros que definen el estado superficial del alambre pueden determinar la durabilidad de la armadura atendiendo a su resistencia frente a la corrosión bajo tensión, evaluada mediante los ensayos que especifica la normativa. En el caso de las cabezas de anclaje de tendones de pretensado, los defectos se presentan de manera aislada y tienen su origen en marcas, arañazos o picaduras de corrosión que pueden producirse durante el proceso de fabricación, transporte, manipulación o puesta en obra. Dada la naturaleza de los defectos, el enfoque determinístico es más apropiado que el estadístico. La evaluación de la importancia de un defecto en un elemento estructural requiere la estimación de la solicitación local que genera el defecto, que permite conocer si el defecto es crítico o si puede llegar a serlo, si es que progresa con el tiempo (por fatiga, corrosión, una combinación de ambas, etc.). En este trabajo los defectos han sido idealizados como grietas, de manera que el análisis quedara del lado de la seguridad. La evaluación de la solicitación local del defecto ha sido calculada mediante el empleo de modelos de elementos finitos de la cabeza de anclaje que simulan las condiciones de trabajo reales de la cabeza de anclaje durante su vida útil. A partir de estos modelos numéricos se ha analizado la influencia en la carga de rotura del anclaje de diversos factores como la geometría del anclaje, las condiciones del apoyo, el material del anclaje, el tamaño del defecto su forma y su posición. Los resultados del análisis numérico han sido contrastados satisfactoriamente mediante la realización de una campaña experimental de modelos a escala de cabezas de anclaje de Polimetil-metacrilato en los que artificialmente se han introducido defectos de diversos tamaños y en distintas posiciones. ABSTRACT Most of the prestressed concrete structures built in the last 50 years have demonstrated an excellent durability when they are constructed in accordance with the rules of good design, detailing and execution. This is particularly true with respect to the feared stress corrosion cracking, which is typical of high strength prestressing steel wires. Less attention, however, has been paid to the stress corrosion cracking susceptibility of anchorages for steel tendons for prestressing concrete, probably due to the low number of reported failure cases. Damage tolerance and fracture mechanics concepts in civil engineering structures have recently started to be incorporated in some design and calculation rules for metallic structures, however it is still far from being assimilated and used by civil engineers in their calculations on a regular basis. This limited knowledge of the damage tolerance basis could lead to significant repair and maintenance costs. This work deals with the applicability of fracture mechanics and damage tolerance concepts to the components of prestressed systems, which are used in civil engineering. Such concepts have been applied to assess the susceptibility of the prestressing steel wires to stress corrosion cracking and the reduction of load bearing capability of anchorage devices due to the presence of defects. For this purpose a combination of experimental work and numerical techniques have been performed. Surface defects in prestressing steel wires are not shown alone, though a certain degree of continuity in the axial direction exist. A significant number of such defects is also observed. Hence a statistical approach was used, which is assumed to be more appropriate than the deterministic approach. The use of statistical methods based in extreme value theories has allowed the characterising of the surface condition of 5.2 mm-diameter wires. On the other hand the stress corrosion cracking susceptibility of the wire has been assessed by means of an experimental testing program in line with the current regulations, which has allowed statistical characterisasion of their performances against stress corrosion cracking. In the light of the test results, it has been possible to evaluate how the surface condition parameters could determine the durability of the active metal armour regarding to its resistance against stress corrosion cracking assessed by means of the current testing regulations. In the case of anchorage devices for steel tendons for prestressing concrete, the damage is presented as point defects originating from dents, scratches or corrosion pits that could be produced during the manufacturing proccess, transport, handling, assembly or use. Due to the nature of these defects, in this case the deterministic approach is more appropriate than the statistical approach. The assessment of the relevancy of defect in a structural component requires the computation of the stress intensity factors, which in turn allow the evaluation of whether the size defect is critical or could become critical with the progress of time (due to fatigue, corrosion or a combination of both effects). In this work the damage is idealised as tiny cracks, a conservative hypothesis. The stress intensity factors have been calculated by means of finite element models of the anchorage representing the real working conditions during its service life. These numeric models were used to assess the impact of some factors on the rupture load of the anchorage, such the anchorage geometry, material, support conditions, defect size, shape and its location. The results from the numerical analysis have been succesfully correlated against the results of the experimental testing program of scaled models of the anchorages in poly-methil methacrylate in which artificial damage in several sizes and locations were introduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joints has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Additionally, fatigue tests under constant cyclic stress and loading-unloading ramps have been carried out in order to evaluate the electromechanical behavior of the joints and the effect of maximum applied stress on the critical current. Finally, a preliminary numerical study by means of the Finite Element Method (FEM) of the electromechanical behavior of the joints between commercial HTS is presented.