991 resultados para Sequence variability
Resumo:
The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.
Resumo:
Background: Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings: Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some genderrelated differences. Conclusions/Significance: We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.
Resumo:
Mutations in the human GLI2 gene were first reported in association with defective anterior pituitary formation, panhypopituitarism, and forebrain anomalies represented by typical holoprosencephaly (HPE) and holoprosencephaly-like (HPE-L) phenotypes and postaxial polydactyly. Subsequently, anophthalmia plus orbital anomalies, heminasal aplasia, branchial arch anomalies and polydactyly have also been incorporated into the general phenotype. Here we described six Brazilian patients with phenotypic manifestations that range from isolated cleft lip/palate with polydactyly, branchial arch anomalies to semi-lobar holoprosencephaly. Novel sequence variants were found in the GLI2 gene in patients with marked involvement of the temporomandibular joint (TMJ), a new clinical finding observed with mutations of this gene. Clinical, molecular and genetic aspects are discussed.
Resumo:
Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26?+?2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested.
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
The recent advent of Next-generation sequencing technologies has revolutionized the way of analyzing the genome. This innovation allows to get deeper information at a lower cost and in less time, and provides data that are discrete measurements. One of the most important applications with these data is the differential analysis, that is investigating if one gene exhibit a different expression level in correspondence of two (or more) biological conditions (such as disease states, treatments received and so on). As for the statistical analysis, the final aim will be statistical testing and for modeling these data the Negative Binomial distribution is considered the most adequate one especially because it allows for "over dispersion". However, the estimation of the dispersion parameter is a very delicate issue because few information are usually available for estimating it. Many strategies have been proposed, but they often result in procedures based on plug-in estimates, and in this thesis we show that this discrepancy between the estimation and the testing framework can lead to uncontrolled first-type errors. We propose a mixture model that allows each gene to share information with other genes that exhibit similar variability. Afterwards, three consistent statistical tests are developed for differential expression analysis. We show that the proposed method improves the sensitivity of detecting differentially expressed genes with respect to the common procedures, since it is the best one in reaching the nominal value for the first-type error, while keeping elevate power. The method is finally illustrated on prostate cancer RNA-seq data.
Resumo:
BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.
Resumo:
A new sedimentary sequence from Lago di Venere on Pantelleria Island, located in the Strait of Sicily between Tunisia and Sicily was recovered. The lake is located in the coastal infra-Mediterranean vegetation belt at 2 m a.s.l. Pollen, charcoal and sedimentological analyses are used to explore linkages among vegetation, fire and climate at a decadal scale over the past 1200 years. A dry period from ad 800 to 1000 that corresponds to the ‘Medieval Warm Period’ (WMP) is inferred from sedimentological analysis. The high content of carbonate recorded in this period suggests a dry phase, when the ratio of evaporation/precipitation was high. During this period the island was dominated by thermophilous and drought-tolerant taxa, such as Quercus ilex, Olea, Pistacia and Juniperus. A marked shift in the sediment properties is recorded at ad 1000, when carbonate content became very low suggesting wetter conditions until ad 1850–1900. Broadly, this period coincides with the ‘Little Ice Age’ (LIA), which was characterized by wetter and colder conditions in Europe. During this time rather mesic conifers (i.e. Pinus pinaster), shrubs and herbs (e.g. Erica arborea and Selaginella denticulata) expanded, whereas more drought-adapted species (e.g. Q. ilex) declined. Charcoal data suggest enhanced fire activity during the LIA probably as a consequence of anthropogenic burning and/or more flammable fuel (e.g. resinous Pinus biomass). The last century was characterized by a shift to high carbonate content, indicating a change towards drier conditions, and re-expansion of Q. ilex and Olea. The post-LIA warming is in agreement with historical documents and meteorological time series. Vegetation dynamics were co-determined by agricultural activities on the island. Anthropogenic indicators (e.g. Cerealia-type, Sporormiella) reveal the importance of crops and grazing on the island. Our pollen data suggest that extensive logging caused the local extinction of deciduous Quercus pubescens around ad1750.
Resumo:
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.
Resumo:
Three hundred eleven honeybee samples from twelve countries in the Middle East and North Africa (MENA) (Jordan, Lebanon, Syria, Iraq, Egypt, Libya, Tunisia, Algeria, Morocco, Yemen, Palestine and Sudan) were analyzed for the presence of deformed wing virus (DWV). The prevalence of DWV throughout the MENA region was pervasive, but variable. The highest prevalence was found in Lebanon and Syria, with prevalence dropping in Palestine, Jordan and Egypt before increasing slightly moving westwards to Algeria and Morocco Phylogenetic analysis of a 194 nucleotide section of the DWV Lp gene did not identify any significant phylogenetic resolution among the samples, although the sequences did show consistent regional clustering, including an interesting geographic gradient from Morocco through North Africa to Jordan and Syria. The sequences revealed several clear variability hotspots in the deduced amino acid sequence, that furthermore showed some patterns of regional identity. Furthermore, the sequence variants from the Middle East and North Africa appear more numerous and diverse than those from Europe. This article is protected by copyright. All rights reserved.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
Mycoplasma hyorhinis is a common inhabitant of the upper respiratory tract and tonsils of pigs. Its role as a possible pathogen remains controversial. In order to gain more insight into the epidemiology and population structure of M. hyorhinis we genetically characterized 60 isolates by multi locus sequence typing (MLST). The M. hyorhinis strains originated from Swiss and German pig herds with knowledge on the clinical background. The MLST scheme of Tocqueville et al. (J. Clin. Microbiol. 2014) was optimized, primers for the six MLST gene fragments were newly designed to allow amplification and sequencing with a single protocol. A total of 27 ST were observed with the 60 strains, 26 of those were previously unknown types. Generally identical genotypes were observed within a farm but they differed between farms. The identical genotype was also observed in three different Swiss farms. On the other Hand different genotypes within a farm were found with three German farms. The Swiss isolates formed a distinct cluster but otherwise there was no geographical nor a clinical association with specific Clusters observed. Data shows a high variability of M. hyorhinis comparable to what is observed for Mycoplasma hyopneumoniae. Similar to this pathogen the population structure of M. hyorhinis also shows some limited clonality with predominant genotypes within an animal and a single farm but different ones between farms. The comparable population structure of M. hyopneumoniae and M. hyorhinis could indicate a similar evolution of the two species in the common pig host.