91 resultados para Semigroup
Resumo:
We describe a new technique for finding efficient presentations for finite groups. We use it to answer three previously unresolved questions about the efficiency of group and semigroup presentations.
Resumo:
We present a Lorentz invariant extension of a previous model for intrinsic decoherence (Milburn 1991 Phys. Rev. A 44 5401). The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, similar to modifications suggested by quantum gravity and string theory, but without sacrificing Lorentz invariance. Some observational signatures are discussed.
Resumo:
Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.
Resumo:
We discuss functions f : X × Y → Z such that sets of the form f (A × B) have non-empty interiors provided that A and B are non-empty sets of second category and have the Baire property.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05
Resumo:
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.
Resumo:
2000 Mathematics Subject Classification: 20M20, 20M10.
Resumo:
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.
Resumo:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40.
Resumo:
Peer reviewed
Resumo:
Let $M$ be a compact, oriented, even dimensional Riemannian manifold and let $S$ be a Clifford bundle over $M$ with Dirac operator $D$. Then \[ \textsc{Atiyah Singer: } \quad \text{Ind } \mathsf{D}= \int_M \hat{\mathcal{A}}(TM)\wedge \text{ch}(\mathcal{V}) \] where $\mathcal{V} =\text{Hom}_{\mathbb{C}l(TM)}(\slashed{\mathsf{S}},S)$. We prove the above statement with the means of the heat kernel of the heat semigroup $e^{-tD^2}$. The first outstanding result is the McKean-Singer theorem that describes the index in terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local geometric information. Moreover, if we use the asymptotic expansion of the kernel we will see that in the computation of the index only one term matters. The Berezin formula tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at the end, Getzler calculus enables us to find the integral of these top parts in terms of characteristic classes.
Resumo:
We prove that a semigroup generated by finitely many truncated convolution operators on $L_p[0, 1]$ with 1 ≤ p < ∞ is non-supercyclic. On the other hand, there is a truncated convolution operator, which possesses irregular vectors.
Resumo:
In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor’s Theorem, Fermat’s Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided.
Resumo:
The classification of minimal sets is a central theme in abstract topological dynamics. Recently this work has been strengthened and extended by consideration of homomorphisms. Background material is presented in Chapter I. Given a flow on a compact Hausdorff space, the action extends naturally to the space of closed subsets, taken with the Hausdorff topology. These hyperspaces are discussed and used to give a new characterization of almost periodic homomorphisms. Regular minimal sets may be described as minimal subsets of enveloping semigroups. Regular homomorphisms are defined in Chapter II by extending this notion to homomorphisms with minimal range. Several characterizations are obtained. In Chapter III, some additional results on homomorphisms are obtained by relativizing enveloping semigroup notions. In Veech's paper on point distal flows, hyperspaces are used to associate an almost one-to-one homomorphism with a given homomorphism of metric minimal sets. In Chapter IV, a non-metric generalization of this construction is studied in detail using the new notion of a highly proximal homomorphism. An abstract characterization is obtained, involving only the abstract properties of homomorphisms. A strengthened version of the Veech Structure Theorem for point distal flows is proved. In Chapter V, the work in the earlier chapters is applied to the study of homomorphisms for which the almost periodic elements of the associated hyperspace are all finite. In the metric case, this is equivalent to having at least one fiber finite. Strong results are obtained by first assuming regularity, and then assuming that the relative proximal relation is closed as well.
Resumo:
The square root velocity framework is a method in shape analysis to define a distance between curves and functional data. Identifying two curves, if the differ by a reparametrization leads to the quotient space of unparametrized curves. In this paper we study analytical and topological aspects of this construction for the class of absolutely continuous curves. We show that the square root velocity transform is a homeomorphism and that the action of the reparametrization semigroup is continuous. We also show that given two $C^1$-curves, there exist optimal reparametrizations realising the minimal distance between the unparametrized curves represented by them.