972 resultados para Semiconductor oxides
Resumo:
The objective of the present study was to identify disturbances of nitric oxide radical (·NO) metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine), water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg) and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg).Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia), and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM), urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM), ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol), and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol), in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml) in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.
Resumo:
Defects in semiconductor crystals and at their interfaces usually impair the properties and the performance of devices. These defects include, for example, vacancies (i.e., missing crystal atoms), interstitials (i.e., extra atoms between the host crystal sites), and impurities such as oxygen atoms. The defects can decrease (i) the rate of the radiative electron transition from the conduction band to the valence band, (ii) the amount of charge carriers, and (iii) the mobility of the electrons in the conduction band. It is a common situation that the presence of crystal defects can be readily concluded as a decrease in the luminescence intensity or in the current flow for example. However, the identification of the harmful defects is not straightforward at all because it is challenging to characterize local defects with atomic resolution and identification. Such atomic-scale knowledge is however essential to find methods for reducing the amount of defects in energy-efficient semiconductor devices. The defects formed in thin interface layers of semiconductors are particularly difficult to characterize due to their buried and amorphous structures. Characterization methods which are sensitive to defects often require well-defined samples with long range order. Photoelectron spectroscopy (PES) combined with photoluminescence (PL) or electrical measurements is a potential approach to elucidate the structure and defects of the interface. It is essential to combine the PES with complementary measurements of similar samples to relate the PES changes to changes in the interface defect density. Understanding of the nature of defects related to III-V materials is relevant to developing for example field-effect transistors which include a III-V channel, but research is still far from complete. In this thesis, PES measurements are utilized in studies of various III-V compound semiconductor materials. PES is combined with photoluminescence measurements to study the SiO2/GaAs, SiNx/GaAs and BaO/GaAs interfaces. Also the formation of novel materials InN and photoluminescent GaAs nanoparticles are studied. Finally, the formation of Ga interstitial defects in GaAsN is elucidated by combining calculational results with PES measurements.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
The reaction of tris(pentafluorophenyl)phosphine [5] with the nucleophiles dimethyl formamide (DMF), hexamethylphosphoric triamide (HMPA), diethyl formamide (DEF), hexaethylphosphoric triamide (HEPA), hydrazine, N,N-dimethyl hydrazine (in presence and/or absence of KF), phenylhydrazine, ammonium hydroxide, formamide, aniline, sodium hydrogen sulfide, and hexaethylphosphorous triamide was investigated. The reaction of [5] with DMF and HMPA gave the same product, namely tris-[4-(N,N-dimethylamino)-2,3,5,6-tetrafluorophenyl]phosphine [12] but in higher yield in the case of HMPA. Compound (5] also reacted with DEF to give tris[4-(N,N-diethylamino)-2,3,5,6-tetrafluorophenyl] phosphine [14]. When [51 was treated with HEPA, it gave a mixture of bis(pentafluorophe~yl)-(N,N-diethylamino-tetrafluorophenyl)phosphine, pentafluorophenyl-bis-(N,N-diethylamino-tetrafluorophenyl)phosphine and tris (N,N-diethylamino-tetrafluorophenyl)phosphine. Treatment of [5] with aqueeus hydrazine solution in excess ethanol gave tris(4-hydrazo-2,3,4,6-tetrafluorophenyl)phosphine [1s1 in high yield while reaction with aqueous hydrazine led to C-P cleavage and production of tetrafluorophenyl hydrazine. With N,N-dimethyl hydrazine, [5] gave tris(4-N,N-dimethylhydrazine-2,3,5,6-tetrafluorophenyl) phosphine {20j. The latter could be obtained in higher yield and shorter reaction time, by the addition of KF. The reaction of compound {51 with phenylhydrazine in THF gave bis(pentafluorophe~yl)-4-S-phenylhydrazino- 2,3,5,6-tetrafluorophenyl phosphine [22] in low yield. Reaction of [5] with ammonium hydroxide in THF at high pressure in the presence of KF gave tris-~4-amino-2,3,5,6-tetrafluorophenyl)phosphine [25]. Similarly, formamide led to a mixture of (C6F4NHZ)3P, (C6F4NHZ)ZPC6FS, (C6F4NHZ)ZPC6F4NHCHO, and C6F4NHZP(C6Fs)(C6F4NHCHO). When [5] was treated with aniline, a mixture of mono-, di-, and tri-substituted products was obtained. Sodium hydrogen sulfide in ethylene glycol/ pyridine led to C-P cleavage and the isolation of pentafluorobenzene and tetrafluorothiophenol. Reaction of [5] and its oxide [35] with different alkoxides in the corresponding alcohols led mainly to C-P bond cleavage products, with the exception of one case where sodium methoxide was used in ether, and which led to tris-(4-methoxy-2,3,9,6-tetrafluorophenyl)phosphine [37]. On the basis of various spectroscopic data, it was concluded that the para position in compound [5] was generally the favoured site of attack.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2010.
Resumo:
Tesis (Doctor en Ingeniería de Materiales) UANL, 2013.
Resumo:
Materials and equipment which fail to achieve the design requirements or projected life due to undetected defects may require expensive repair or early replacement. Such defects may also be the cause of unsafe conditions or catastrophic unexpected failure, and will lead to loss of revenue due to plant shutdown. Non-Destructive Evaluation (NDE) / Non Destructive Testing (NDT) is used for the examination of materials and components without changing or destroying their usefulness. NDT can be applied to each stage of a system’s construction, to monitor the integrity of the system or structure throughout its life.
Resumo:
Catalysis is an essential technology in manufacturing industries. The investigation based on supported vanadia catalysts and it’s sulfated analogues. Vanadia is a transition metal oxide and is used in oxidation reactions in chemical industry. It is more active and selective catalysts on suitable supports. The work deals with preparation of vanadia incorporated tin oxide and zirconia systems by wet impregnation. Physico-chemical characterization using instrumental techniques like BET etc. The surface acidic properties were determined by the ammonia TPD studies, Perylene absorption studies and Cumene conversion reaction. The catalytic activities of the prepared systems are tested by Friedel-Crafts benzylation of arenes and Bechmann rearrangement of Cyclohexanol oxime. Here the rector reactions are relatively rare. So to test the application of the catalyst systems for the selective oxidation of cyclohexanol to cyclohexanone and finally evaluate the catalytic activity of the systems for the vapour phase oxidative dehydrogenation of Ethylbenzene, which leads to the formation of Industrially important compound ‘styrene’ is another objective of this work
Resumo:
Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.
Resumo:
Nonlinear dynamics of laser systems has become an interesting area of research in recent times. Lasers are good examples of nonlinear dissipative systems showing many kinds of nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these phenomena in lasers has fundamental scientific importance since the investigations on these effects reveal many interesting features of nonlinear effects in practical systems. Further, the understanding of the instabilities in lasers is helpful in detecting and controlling such effects. Chaos is one of the most interesting phenomena shown by nonlinear deterministic systems. It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain ranges of parameters. Many investigations on laser chaos have been done in the last two decades. The earlier studies in this field were concentrated on the dynamical aspects of laser chaos. However, recent developments in this area mainly belong to the control and synchronization of chaos. A number of attempts have been reported in controlling or suppressing chaos in lasers since lasers are the practical systems aimed to operated in stable or periodic mode. On the other hand, laser chaos has been found to be applicable in high speed secure communication based on synchronization of chaos. Thus, chaos in laser systems has technological importance also. Semiconductor lasers are most applicable in the fields of optical communications among various kinds of laser due to many reasons such as their compactness, reliability modest cost and the opportunity of direct current modulation. They show chaos and other instabilities under various physical conditions such as direct modulation and optical or optoelectronic feedback. It is desirable for semiconductor lasers to have stable and regular operation. Thus, the understanding of chaos and other instabilities in semiconductor lasers and their xi control is highly important in photonics. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated. A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor laser