956 resultados para Semi-infinite and infinite programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop and apply methods for the spectral analysis of non-selfadjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analogous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443), in which the main objects of study are random tridiagonal matrices which have zeros on the main diagonal and random ±1’s as the other entries. We explore the relationship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite and bi-infinite matrix cases, for example showing that the numerical range and p-norm ε - pseudospectra (ε > 0, p ∈ [1,∞] ) of the random finite matrices converge almost surely to their infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix spectrum Σ. We also propose a sequence of inclusion sets for Σ which we show is convergent to Σ, with the nth element of the sequence computable by calculating smallest singular values of (large numbers of) n×n matrices. We propose similar convergent approximations for the 2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the infinite matrix pseudospectra from above and below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of interspecies repulsion, while the intraspecies interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intragap (with both chemical potentials falling into a single band gap) or intergap, otherwise. In the case of the intraspecies attraction, a smooth transition takes place between solitons in the semi-infinite gap, those in the first finite band gap, and semigap solitons (with one component in a band gap and the other in the semi-infinite gap).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using  Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of gaseous pollutants in soils has stimulated many experimental activities, including forced ventilation in the field as well as laboratory transport experiments with gases. The dispersion coefficient in advective-dispersive gas phase transport is often dominated by molecular diffusion, which leads to a large overall dispersivity gamma. Under such conditions it is important to distinguish between flux and resident modes of solute injection and detection. The influence of the inlet type oil the macroscopic injection mode was tested in two series of column experiments with gases at different mean flow velocities nu. First we compared infinite resident and flux injections, and second, semi-infinite resident and flux injections. It is shown that the macroscopically apparent injection condition depends on the geometry of the inlet section. A reduction of the cross-sectional area of the inlet relative to that of the column is very effective in excluding the diffusive solute input, thus allowing us to use the solutions for a flux Injection also at rather low mean flow velocities nu. If the whole cross section of a column is exposed to a large reservoir like that of ambient air, a semi-infinite resident injection is established, which can be distinguished from a flux injection even at relatively high velocities nu, depending on the mechanical dispersivity of the porous medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dike swarms consisting of tens to thousands of subparallel dikes are commonly observed at Earth's surface, raising the possibility of simultaneous propagation of two or more dikes at various stages of a swarm's development. The behavior of multiple propagating dikes differs from that of a single dike owing to the interacting stress fields associated with each dike. We analyze an array of parallel, periodically spaced dikes that grow simultaneously from an overpressured source into a semi-infinite, linear elastic host rock. To simplify the analysis, we assume steady state (constant velocity) magma flow and dike propagation. We use a perturbation method to analyze the coupled, nonlinear problem of multiple dike propagation and magma transport. The stress intensity factor at the dike tips and the opening displacements of the dike surfaces are calculated. The numerical results show that dike spacing has a profound effect on the behavior of dike propagation. The stress intensity factors at the tips of parallel dikes decrease with a decrease in dike spacing and are significantly smaller than that for a single dike with the same length. The reduced stress intensity factor indicates that, compared to a single dike, propagation of parallel dikes is more likely to be arrested under otherwise the same conditions. It also implies that fracture toughness of the host rock in a high confining pressure environment may not be as high as inferred from the propagation of a single dike. Our numerical results suggest fracture toughness values on the order of 100 MPa root m. The opening displacements for parallel dikes are smaller than that for a single dike, which results in higher magma pressure gradients in parallel dikes and lower flux of magma transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondeterminism and partially instantiated data structures give logic programming expressive power beyond that of functional programming. However, functional programming often provides convenient syntactic features, such as having a designated implicit output argument, which allow function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión, used in the Ciao system, which can be implemented in ISO-standard Prolog systems and covers function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features and can be combined with other extensions to ISO-Prolog such as constraints. We also highlight the features of the Ciao system which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain aspects of functional programming provide syntactic convenience, such as having a designated implicit output argument, which allows function cali nesting and sometimes results in more compact code. Functional programming also sometimes allows a more direct encoding of lazy evaluation, with its ability to deal with infinite data structures. We present a syntactic functional extensión of Prolog covering function application, predefined evaluable functors, functional definitions, quoting, and lazy evaluation. The extensión is also composable with higher-order features. We also highlight the Ciao features which help implementation and present some data on the overhead of using lazy evaluation with respect to eager evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.