985 resultados para Semantic features matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grey Level Co-occurrence Matrices (GLCM) are one of the earliest techniques used for image texture analysis. In this paper we defined a new feature called trace extracted from the GLCM and its implications in texture analysis are discussed in the context of Content Based Image Retrieval (CBIR). The theoretical extension of GLCM to n-dimensional gray scale images are also discussed. The results indicate that trace features outperform Haralick features when applied to CBIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the cardinal features of semantic dementia (SD) is a steady reduction in expressive vocabulary. We investigated the nature of this breakdown by assessing the psycholinguistic characteristics of words produced spontaneously by SD patients during an autobiographical memory interview. Speech was analysed with respect to frequency and imageability, and a recently-developed measure called semantic diversity. This measure quantifies the degree to which a word can be used in a broad range of different linguistic contexts. We used this measure in a formal exploration of the tendency for SD patients to replace specific terms with more vague and general words, on the assumption that more specific words are used in a more constrained set of contexts. Relative to healthy controls, patients were less likely to produce low-frequency, high-imageability words, and more likely to produce highly frequent, abstract words. These changes in the lexical-semantic landscape were related to semantic diversity: the highly frequent and abstract words most prevalent in the patients' speech were also the most semantically diverse. In fact, when the speech samples of healthy controls were artificially engineered such that low semantic diversity words (e.g., garage, spanner) were replaced with broader terms (e.g., place, thing), the characteristics of their speech production came to closely resemble that of SD patients. A similar simulation in which low-frequency words were replaced was less successful in replicating the patient data. These findings indicate systematic biases in the deterioration of lexical-semantic space in SD. As conceptual knowledge degrades, speech increasingly consists of general terms that can be applied in a broad range of linguistic contexts and convey less specific information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threat detection is a challenging problem, because threats appear in many variations and differences to normal behaviour can be very subtle. In this paper, we consider threats on a parking lot, where theft of a truck’s cargo occurs. The threats range from explicit, e.g. a person attacking the truck driver, to implicit, e.g. somebody loitering and then fiddling with the exterior of the truck in order to open it. Our goal is a system that is able to recognize a threat instantaneously as they develop. Typical observables of the threats are a person’s activity, presence in a particular zone and the trajectory. The novelty of this paper is an encoding of these threat observables in a semantic, intermediate-level representation, based on low-level visual features that have no intrinsic semantic meaning themselves. The aim of this representation was to bridge the semantic gap between the low-level tracks and motion and the higher-level notion of threats. In our experiments, we demonstrate that our semantic representation is more descriptive for threat detection than directly using low-level features. We find that a person’s activities are the most important elements of this semantic representation, followed by the person’s trajectory. The proposed threat detection system is very accurate: 96.6 % of the tracks are correctly interpreted, when considering the temporal context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity. Objective To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments. Methods Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses. Results Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification. Conclusions Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete information dispositional metasemantics says that our expressions get their meaning in virtue of what our dispositions to apply those terms would be given complete information. The view has recently been advanced and argued to have a number of attractive features. I argue that that it threatens to make the meanings of our words indeterminate and doesn't do what it was that made a dispositional view attractive in the first place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge of moving past the classic Window Icons Menus Pointer (WIMP) interface, i.e. by turning it ‘3D’, has resulted in much research and development. To evaluate the impact of 3D on the ‘finding a target picture in a folder’ task, we built a 3D WIMP interface that allowed the systematic manipulation of visual depth, visual aides, semantic category distribution of targets versus non-targets; and the detailed measurement of lower-level stimuli features. Across two separate experiments, one large sample web-based experiment, to understand associations, and one controlled lab environment, using eye tracking to understand user focus, we investigated how visual depth, use of visual aides, use of semantic categories, and lower-level stimuli features (i.e. contrast, colour and luminance) impact how successfully participants are able to search for, and detect, the target image. Moreover in the lab-based experiment, we captured pupillometry measurements to allow consideration of the influence of increasing cognitive load as a result of either an increasing number of items on the screen, or due to the inclusion of visual depth. Our findings showed that increasing the visible layers of depth, and inclusion of converging lines, did not impact target detection times, errors, or failure rates. Low-level features, including colour, luminance, and number of edges, did correlate with differences in target detection times, errors, and failure rates. Our results also revealed that semantic sorting algorithms significantly decreased target detection times. Increased semantic contrasts between a target and its neighbours correlated with an increase in detection errors. Finally, pupillometric data did not provide evidence of any correlation between the number of visible layers of depth and pupil size, however, using structural equation modelling, we demonstrated that cognitive load does influence detection failure rates when there is luminance contrasts between the target and its surrounding neighbours. Results suggest that WIMP interaction designers should consider stimulus-driven factors, which were shown to influence the efficiency with which a target icon can be found in a 3D WIMP interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.