999 resultados para Sediment production
Resumo:
We present three new benthic foraminiferal delta13C, delta18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial delta13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) delta13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [per mil VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic delta13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4-0 ka) and LGM (22-16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air-sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed d13CDIC values of glacial circumantarctic deep water of approximately 0.3 per mil to 0.4 per mil. Our reconstruction brings Atlantic and Southern Ocean d13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic delta18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove (Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A gradual increase in Earth's surface temperatures marking the transition from the late Paleocene to early Eocene (55.8±0.2Ma), represents an extraordinary warming event known as Paleocene-Eocene Thermal Maximum (PETM). Both marine and continental sedimentary records during this period reveal evidences for the massive injection of isotopically light carbon. The carbon dioxide injection from multiple potential sources may have triggered the global warming. The importance of the PETM studies is due to the fact that the PETM bears some striking resemblances to the human-caused climate change unfolding today. Most notably, the culprit behind it was a massive injection of heat-trapping greenhouse gases into the atmosphere and oceans, comparable in volume to what our persistent burning of fossil fuels could deliver in coming centuries. The exact knowledge of what went on during the PETM could help us to foresee the future climate change. The response of the oceanic and continental environments to the PETM is different. Many factors might control the response of the environments to the PETM such as paleogeography, paleotopography, paleoenvironment, and paleodepth. To better understand the mechanisms triggering PETM events, two different environments were studied: 1) shallow marine to inner shelf environment (Wadi Nukhul, Sinai; and the Dababiya GSSP, Luxor, Egypt), and 2) terrestrial environments (northwestern India lignite mines) representing wetland, and fluvial environments (Esplugafreda, Spain) both highlighting the climatic changes observed in continental conditions. In the marine realm, the PETM is characterized by negative ö13Ccar and ô13Corg excursions and shifts in Ô15N to ~0%o values above the P/E boundary and persisting along the interval suggesting a bloom and high production of atmospheric N2-fixers. Decrease in carbonate contents could be due to dissolution and/or dilution by increasing detrital input. High Ti, K and Zr and decreased Si contents at the P/E boundary indicate high weathering index (CIA), which coincides with significant kaolinite input and suggests intense chemical weathering under humid conditions at the beginning of the PETM. Two anoxic intervals are observed along the PETM. The lower one may be linked to methane released from the continental shelf with no change in the redox proxies, where the upper anoxic to euxinic conditions are revealed by increasing U, Mo, V, Fe and the presence of small size pyrite framboids (2-5fim). Productivity sensitive elements (Cu, Ni, and Cd) show their maximum concentrated within the upper anoxic interval suggesting high productivity in surface water. The obtained data highlight that intense weathering and subsequent nutrient inputs are crucial parameters in the chain of the PETM events, triggering productivity during the recovery phase. In the terrestrial environments, the establishment of wetland conditions and consequence continental climatic shift towards more humid conditions led to migration of modern mammals northward following the extension of the tropical belts. Relative ages of this mammal event based on bio-chemo- and paleomagnetic stratigraphy support a migration path originating from Asia into Europe and North America, followed by later migration from Asia into India and suggests a barrier to migration that is likely linked to the timing of the India-Asia collision. In contrast, at Esplugafereda, northeastern Spain, the terrestrial environment reacted differently. Two significant S13C shifts with the lower one linked to the PETM and the upper corresponding to the Early Eocene Thermal Maximum (ETM2); 180/160 paleothermometry performed on two different soil carbonate nodule reveal a temperature increase of around 8°C during the PETM. The prominent increase in kaolinite content within the PETM is linked to increased runoff and/or weathering of adjacent and coeval soils. These results demonstrate that the PETM coincides globally with extreme climatic fluctuations and that terrestrial environments are very likely to record such climatic changes. - La transition Paléocène-Eocène (55,8±0,2 Ma) est marquée par un réchauffement extraordinaire communément appelé « Paleocene-Eocene Thermal Maximum » (PETM). Les données géochimiques caractérisant les sédiments marins et continentaux de cette période indiquent que ce réchauffement a été déclenché par une augmentation massive de CO2 lié à la déstabilisation des hydrates de méthane stockés le long des marges océaniques. L'étude des événements PETM constitue donc un bon analogue avec le réchauffement actuel. Le volume de CO2 émis durant le PETM est comparable avec le CO2 lié à l'activité actuelle humaine. La compréhension des causes du réchauffement du PETM peut être cruciale pour prévoir et évaluer les conséquences du réchauffement anthropogénique, en particulier les répercussions d'un tel réchauffement sur les domaines continentaux et océaniques. De nombreux facteurs entrent en ligne de compte dans le cas du PETM, tels que la paléogéographie, la paléotopographie et les paléoenvironnement. Pour mieux comprendre les réponses environnementales aux événements du PETM, 2 types d'environnements ont été choisis : (1) le domaine marin ouvert mais relativement peu profond (Wadi Nukhul. Sinai, Dababiya, Luxor, Egypte), (2) le milieu continental marécageux humide (mines de lignite, Inde) et fluviatile, semi-aride (Esplugafreda, Pyrénées espagnoles). Dans le domaine marin, le PETM est caractérisé par des excursions négatives du ô13Ccar et ô13Corg et un shift persistant des valeurs de 815N à ~ 0 %o indiquant une forte activité des organismes (bactéries) fixant l'azote. La diminution des carbonates observée durant le PETM peut-être due à des phénomènes de dissolution ou une augmentation des apports terrigènes. Des taux élevés en Ti, K et Zr et une diminution des montants de Si, reflétés par des valeurs des indices d'altération (CIA) qui coïncident avec une augmentation significative des apports de kaolinite impliquent une altération chimique accrue, du fait de conditions plus humides au début du PETM. Deux événements anoxiques globaux ont été mis en évidence durant le PETM. Le premier, situé dans la partie inférieur du PETM, serait lié à la libération des hydrates de méthane stockés le long des talus continentaux et ne correspond pas à des variations significatives des éléments sensibles aux changements de conditions redox. Le second est caractérisé par une augmentation des éléments U, Mo, V et Fe et la présence de petit framboids de pyrite dont la taille varie entre 2 et 5pm. Le second épisode anoxique est caractérisé par une forte augmentation des éléments sensibles aux changements de la productivité (Cu, Ni et Co), indiquant une augmentation de la productivité dans les eaux de surface. Les données obtenues mettent en évidence le rôle crucial joué par l'altération et les apports en nutriments qui en découlent. Ces paramètres sont cruciaux pour la succession des événements qui ont conduit au PETM, et plus particulièrement l'augmentation de la productivité dans la phase de récupération. Durant le PETM, le milieu continental est caractérisé par l'établissement de conditions humides qui ont facilité voir provoqué la migration des mammifères modernes qui ont suivi le déplacement de ces ceintures climatiques. L'âge de cette migration est basé sur des arguments chimiostratigraphiques (isotopes stables), biostratigraphiques et paléomagnétiques. Les données bibliographiques ainsi que celles que nous avons récoltées en Inde, montrent que les mammifères modernes ont d'abord migré depuis l'Asie vers l'Europe, puis dans le continent Nord américain. Ces derniers ne sont arrivés en Inde que plus tardivement, suggérant que le temps de leur migration est lié à la collision Inde-Asie. Dans le Nord-Est de l'Espagne (Esplugafreda), la réponse du milieu continental aux événements PETM est assez différente. Comme en Inde, deux excursions signicatives en ô13C ont été observées. La première correspond au PETM et la seconde est corrélée avec l'optimum thermique de l'Eocène précoce (ETM2). Les isotopes stables de l'oxygène mesurés 2 différents types de nodules calcaires provenant de paléosols suggère une augmentation de 10°C pendant le PETM. Une augmentation simultanée des taux de kaolinite indique une intensification de l'altération chimique et/ou de l'érosion de sols adjacents. Ces résultats démontrent que le PETM coïncide globalement avec des variations climatiques extrêmes qui sont très aisément reconnaissables dans les dépôts continentaux.
Resumo:
The natural flow hydrological characteristics (such as the magnitude, frequency, duration, timing, and rate of change of discharge) of Alpine streams, dominated by snowmelt and glacier melt, have been established for many years. More recently, the ecosystems that they sustain have been described and explained. However, natural Alpine flow regimes may be strongly modified by hydroelectric power production, which impacts upon both river discharge and sediment transfer, and hence on downstream flora and fauna. The impacts of barrages or dams have been well studied. However, there is a second type of flow regulation, associated with flow abstraction at intakes where the water is transferred laterally, either to another valley for storage, or at altitude within the same valley for eventual release downstream. Like barrages, such intakes also trap sediment, but because they are much smaller, they fill more frequently and so need to be flushed regularly. Downstream, while the flow regime is substantially modified, the delivery of sediment (notably coarser fractions) remains. The ecosystem impacts of such systems have been rarely considered. Through reviewing the state of our knowledge of Alpine ecosystems, we outline the key research questions that will need to be addressed in order to modify intake management so as to reduce downstream ecological impacts. Simply redesigning river flows to address sediment management will be ineffective because such redesign cannot restore a natural sediment regime and other approaches are likely to be required if stream ecology in such systems is to be improved.
Resumo:
This study presents the L-Glutaminase Production by Marine Fungi. Enzymes are involved in all aspects of biochemical conversion from the simple enzyme or fermentation conversion to the complex techniques in genetic engineering. Enzyme industry is one among the major industries of the world and there exists a great market for enzymes in general. Food industry is recognized as the largest consumer for commercial enzymes (Lon sane and Ramakrishna, 1989). In industry, enzymes are frequently used for process improvement, for instance to enable the utilization of new types of raw materials or for improving the physical properties of a material so that it can be more easily processed. They are the focal point of biotechnological processe. The marine biosphere is one of the richest of the earth's innumerable habitats, yet is one of the least well characterized. The marine biosphere covers more than two third of the world's surface, our knowledge of marine microorganisms, in particular fungi, is still very limited (Molitoris and Schumann, 1986). The results obtained in the present study the following conclusions are drawn. Beauveria bassiana isolated form marine sediment has immense potential as an Industrial organism for production of L-glutaminase as an extracellular enzyme employing either submerged fermentnation or solid state fermentation
Resumo:
A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.
Resumo:
Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry