925 resultados para Secretory Iga
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Doctorat en sciences médicales
Resumo:
There are many factors in mucosal secretions that contribute to innate immunity and the 'first line of defence' at mucosal surfaces. Few studies, however, have investigated the effects of exercise on many of these 'defence' factors. The aim of the present study was to determine the acute effects of prolonged exercise on salivary levels of selected antimicrobial peptides (AMP) that have not yet been studied in response to exercise (HNP1-3 and LL-37) in addition to immunoglobulin A (IgA). A secondary objective was to assess the effects of exercise on saliva antibacterial capacity. Twelve active men exercised on a cycle ergometer for 2.5 h at approximately 60% of maximal oxygen uptake. Unstimulated whole saliva samples were obtained before and after exercise. There was a significant decrease (P < 0.05) in salivary IgA:osmolality ratio, following exercise, but IgA concentration and secretion rate were unaltered. Salivary HNP1-3 and LL-37 concentrations (P < 0.01 and P < 0.05, respectively), concentration:osmolality ratios (P < 0.01) and secretion rates (P < 0.01) all increased following exercise. Salivary antibacterial capacity (against E. coli) did not change. The increased concentration of AMPs in saliva may confer some benefit to the 'first line of defence' and could result from synergistic compensation within the mucosal immune system and/or airway inflammation and epithelial damage. Further study is required to determine the significance of such changes on the overall 'defence' capacity of saliva and how this influences the overall risk for infection.
Resumo:
This study investigated the effect of a fed or fasted state on the salivary immunoglobulin A (s-IgA) response to prolonged cycling. Using a randomized, crossover design, 16 active adults (8 men and 8 women) performed 2 hr of cycling on a stationary ergometer at 65% of maximal oxygen uptake on 1 occasion after an overnight fast (FAST) and on another occasion 2 hr after consuming a 2.2-MJ high-carbohydrate meal (FED). Timed, unstimulated whole saliva samples were collected immediately before ingestion of the meal, immediately preexercise, 5 min before cessation of exercise, immediately postexercise, and 1 hr postexercise. The samples were analyzed for s-IgA concentration, osmolality, and cortisol, and saliva flow rates were determined to calculate s-IgA secretion rate. Saliva flow rate decreased by 50% during exercise (p < .05), and s-IgA concentration increased by 42% (p < .05), but s-IgA secretion rate remained unchanged. There was a 37% reduction in s-IgA:osmolality postexercise (p < .05), and salivary cortisol increased by 68% (p < .05). There was no effect of FED vs. FAST on these salivary responses. The s-IgA concentration, secretion rate, and osmolality were found to be significantly lower in women than in men throughout the exercise protocol (p < .05); however, there was no difference between genders in saliva flow rate, s-IgA:osmolality ratio, or cortisol. These data demonstrate that a fed or fasted state 2 hr before exercise does not influence resting s-IgA or the response to prolonged cycling. Furthermore, these results show lower levels of s-IgA and osmolality in women than in men at rest.
Resumo:
We demonstrate that SLPI can inhibit lipopolysaccharide-induced NF-kappaB activation in monocytes by preventing degradation of the key regulatory protein IkappaBalpha which is inefficiently degraded by the ubiquitin-proteasome pathway due to a direct effect of SLPI on the activity of this pathway. I designed this project and carried out all of the experiments.
Resumo:
Background: Haem oxygenase-1 (HO-1) is a cytoprotective molecule that is reported to have a protective role in a variety of experimental models of renal injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates HO-1 gene expression; a short number of repeats (S-allele <25) increases transcription. We report the first assessment of the role of this HO-1 gene promoter polymorphism in chronic kidney disease due to autosomal dominant polycystic kidney disease (ADPKD) and IgA nephropathy (IgAN).
Methods: The DNA from 160 patients (99% Caucasian) on renal replacement therapy (RRT) was genotyped. The primary renal disease was ADPKD in 100 patients and biopsy-proven IgAN in 60 patients.
Results: Overall, the mean age at commencement of RRT was not significantly different between patients with and without an S-allele (44.1 years versus 45.0 years, P = 0.64). In patients with ADPKD, the age at commencement of RRT was comparable regardless of the HO-1 genotype (47.7 years versus 46.7 years, P = 0.59). The same was true in patients with IgAN (38.3 years versus 42.2 years, P = 0.28).
Conclusion: This suggests that the functional HO-1 promoter polymorphism does not influence renal survival in CKD due to ADPKD or IgAN.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.
Resumo:
Light and electron microscopy were used to characterize the structure of secretory cells and their products involved in attachment of two monogenean parasites of fish, in order to understand their role in the attachment process. In Bravohollisia rosetta and Bravohollisia gussevi, peduncular gland cells with two nuclei, granular endoplasmic reticulum, and Golgi bodies produce dual electron-dense (DED) secretory bodies with a homogenous electron-dense rind and a less electron-dense fibrillar core (oval and concave in B. rosetta and oval in B. gussevi). The DED secretory bodies are altered as they migrate from the gland cell to the haptoral reservoir, the superficial anchor grooves, and into the gill tissues. The contents of the DED secretory bodies are exocytosed into the reservoirs, fibrillar cores persisting in the matrix, some of which condense, forming highly electron-dense spherical bodies. Small, oval, electron-dense bodies occur in the grooves, while no inclusions are visible in the homogenous exudate within the gill tissues. The single tubular extension of the reservoir enters a bifurcate channel within the anchor via a concealed, crevice-like opening on one side of the anchor. The channel directs secretions into the left and the right grooves via concealed apertures. The secretions, introduced into the tissues by the anchors, probably assist in attachment. The secretions are manifested externally as net-like structures and observed in some cases to be still attached to the point of exudation, on anchors detached from the gill tissues. This suggests that despite having the anchors detached, the worms can still remain anchored to the gill tissues via these net-like structures. Based on this, it is postulated that the net-like secretions probably function as a safety line to anchor the worm during the onset of locomotion and in doing so reduce the risk of tearing host tissues.
Resumo:
Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.