980 resultados para Scrapers (Earthmoving machinery)
Resumo:
Objective: The aim of this study was to investigate the effectiveness of two alternatives methods for the disinfection of oral cleaning devices. Methods: One type of toothbrush and two types of tongue scrapers (steel and plastic) were tested in this study. Sixteen specimens of each group were cut with standardized dimensions, contaminated separately with Candida albicans, Streptococcus mutans and Staphylococcus aureus and incubated for 24 h. After this, oral cleaning devices were washed in saline solution to remove non-adhered cells and divided into two groups (n = 8), one irradiated in microwave and other immersed in 3.78% sodium perborate solution, and evaluated for microbial recovery. The values of cfu of each group of microorganism after disinfection were compared by Kruskal-Wallis and Dunn non-parametric test, considering 95% of confidence. Results: The toothbrush harboured a significant larger number of viable organisms than the tongue scrapers. The steel tongue scraper was less susceptible to adhesion of the three oral microorganisms. The time required to inactivate all contaminating microorganisms using microwave oven was 1 min and, for the immersion in 3.78% sodium perborate solution, was 2 and 3 h, respectively, for C. albicans and S. mutans/S. aureus. Conclusion: Microwave irradiation proved to be an effective alternative method to the disinfection of tongue cleaners and toothbrushes.
Resumo:
Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.
Resumo:
The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.
Resumo:
The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Mecanismos para la formulación y ejecución de planes = Plan formulation and implementation machinery
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Negotiating machinery for Caribbean countries: note on negotiations with overseas shipping interests