989 resultados para Science -- Philosophy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to certain arguments, computation is observer-relative either in the sense that many physical systems implement many computations (Hilary Putnam), or in the sense that almost all physical systems implement all computations (John Searle). If sound, these arguments have a potentially devastating consequence for the computational theory of mind: if arbitrary physical systems can be seen to implement arbitrary computations, the notion of computation seems to lose all explanatory power as far as brains and minds are concerned. David Chalmers and B. Jack Copeland have attempted to counter these relativist arguments by placing certain constraints on the definition of implementation. In this thesis, I examine their proposals and find both wanting in some respects. During the course of this examination, I give a formal definition of the class of combinatorial-state automata , upon which Chalmers s account of implementation is based. I show that this definition implies two theorems (one an observation due to Curtis Brown) concerning the computational power of combinatorial-state automata, theorems which speak against founding the theory of implementation upon this formalism. Toward the end of the thesis, I sketch a definition of the implementation of Turing machines in dynamical systems, and offer this as an alternative to Chalmers s and Copeland s accounts of implementation. I demonstrate that the definition does not imply Searle s claim for the universal implementation of computations. However, the definition may support claims that are weaker than Searle s, yet still troubling to the computationalist. There remains a kernel of relativity in implementation at any rate, since the interpretation of physical systems seems itself to be an observer-relative matter, to some degree at least. This observation helps clarify the role the notion of computation can play in cognitive science. Specifically, I will argue that the notion should be conceived as an instrumental rather than as a fundamental or foundational one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order to better understand this problem, an analysis of the obstacles of implementing HPS into classrooms was undertaken. The obstacles taken into account were structured in four groups: 1. culture of teaching physics, 2. teachers` skills, epistemological and didactical attitudes and beliefs, 3. institutional framework of science teaching, and 4. textbooks as fundamental didactical support. Implications for more effective implementation of HPS are presented, taking the social nature of educational systems into account.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last 50 years a new research area, science education research, has arisen and undergone singular development worldwide. In the specific case of Brazil, research in science education first appeared systematically 40 years ago, as a consequence of an overall renovation in the field of science education. This evolution was also related to the political events taking place in the country. We will use the theoretical work of Rene Kaes on the development of groups and institutions as a basis for our discussion of the most important aspects that have helped the area of science education research develop into an institution and kept it operating as such. The growth of this area of research can be divided into three phases: The first was related to its beginning and early configurations; the second consisted of a process of consolidation of this institution; and the third consists of more recent developments, characterised by a multiplicity of research lines and corresponding challenges to be faced. In particular, we will analyse the special contributions to this study gleaned from the field known as the history and philosophy of science.