983 resultados para Schottky, Diodos de barreira de


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promising theoretical properties of diamond, together with the recent advances in producing high-quality single crystal diamond substrates, have increased the interest in using diamond in power electronic devices. This paper presents numerical and experimental off-state results for a diamond Schottky barrier diode (SBD), one of most studied unipolar devices in diamond. Finding a suitable termination structure is an essential step towards designing a high voltage diamond device. The ramp oxide structure shows very encouraging electronic performance when used to terminate diamond SBDs. High-k dielectrics are also considered in order to further improve the reliability and electrical performance of the structure. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison between SiC and diamond Schottky barrier diodes using the oxide ramp termination. The influences of the dielectric thickness and relative permittivity on the diode's electrical performance are investigated. Typical commercial drift layer parameters are used for this study. The extension of the space charge area throughout the drift region and the current distribution at breakdown are shown. The efficiency of the termination is also evaluated for both SiC and diamond diodes. © (2009) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel alternatives to the conventional single crystal diamond Schottky metal-intrinsic-p+ (m-i-p+) diode is presented in this work. The conduction mechanism of the device is analysed and structural modifications to enhance its performance are proposed. The periodic inclusion of highly p+ doped thin δ-layers and p+ spots in the intrinsic voltage blocking layer of the diode drastically improves the forward performance of these devices enhancing the forward current of the device by a factor of 10 - 17 with a maximum forward current density of ̃ 40 A/cm 2 for a 2 kV device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper's goal is the first demonstration of the fabrication of high power Schottky diodes on synthetic diamond using oxide ramp termination. In order to allow full activated impurities at room temperature and a high hole mobility a low boron doping of the drift layer is employed. Several aspects of the manufacturing technology are presented. A termination with a small ramp angle can be obtained using only RIE technique due to diamond wafer nonuniformity (roughness). Experimental forward and reverse characteristics measured on diamond diodes are also included. © 2007 IEEE.