80 resultados para Scheelite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El yacimiento de Pasto Bueno se localiza en el extremo nordeste del Batolito de la Cordillera Blanca, comprende diversas vetas, generalmente subverticales, asociadas al stock cuarzomonzonitico de Consuzo, datado como Terciario Superior, que intruye a las pizarras de la fm. Chicama y cuarcitas de la fm. Chimu. Las principales vetas discurren con direccion N-S cortando al stock, aunque tambien existen sistemas NE-SW asi como NW-SE encajados sobre las rocas metamorficas. La mineralogia de mena reconocida comprende wolframita (hubnerita), tetraedrita/tenantita, esfalerita y galena, en una ganga de cuarzo, fluorita, sericita, pirita y carbonatos, ademas de molibdenita, calcopirita, bornita, arsenopirita, enargita (luzonita), stolzita, scheelita, zinnwaldita, topacio, tungstita y arsenico nativo. Estudios previos han caracterizado Pasto Bueno como un yacimiento con una gran componente de greisen, con una evolucion de las vetas desde un episodio temprano esteril de 400 oC, depositando la mineralizacion economica en torno a los 220-250 oC y con un evento postumo de 175-220 oC rico en CO2. La precipitacion de la wolframita se produjo a partir de un fluido netamente hidrotermal, sin embargo, dicha precipitacion estuvo controlada por el aporte al sistema de aguas externas meteoricas y/o metamorficas. El trabajo llevado a cabo ha consistido en la realizacion de un estudio microtermometrico de las 3 principales estructuras del distrito: Consuelo, Alonso-Fenix y Chabuca, para caracterizar la evolucion del fluido mineralizador desde el stock (veta Consuelo) hacia las rocas metasedimentarias de las fm. Chicama y Chimu (manto Alonso-Fenix y veta Chabuca). Para ello se realizo un muestreo sobre el evento principal de mineralizacion. Dichas muestras se sometieron a un estudio petrografico de lamina gruesa para seleccionar las muestras optimas para el posterior estudio microtermometrico. Previamente a la obtencion de las medidas de temperatura de fusion del hielo (criotermometria) y de homogenizacion del fluido; se realizo un estudio de petrografia de inclusiones fluidas para caracterizarlas y seleccionar las representativas. La interpretacion de los resultados ha permitido confirmar la existencia de un episodio previo de alta temperatura, superior a 282 oC y un evento mineralizador con temperaturas en torno a los 200-240 oC. Sin embargo, las salinidades obtenidas son mucho menores que las previamente publicadas, en torno al 5 % peso eq. NaCl, frente a 11-17 % peso eq. NaCl. Tambien se ha observado un fluido postumo rico en CO2, pero de temperatura superior, en torno a los 270 oC. Los gradientes isotermicos muestran dos focos para dichos fluidos hidrotermales: el primero asociado al stock en la veta Consuelo, y el segundo en la veta Chabuca, asociado a la zona de cabalgamiento de las pizarras de la fm. Chicama sobre las cuarcitas de la fm. Chimu. Este segundo foco puede corresponder con los aportes externos de aguas metamorficas. Para finalizar, se dan una serie de pautas para guiar las futuras exploraciones en el yacimiento. ABSTRACT The Pasto Bueno deposit is located at the northeastern end of the Cordillera Blanca Batholith. It comprises several veins, generally subvertical, associated with the quartz-monzonite stock of Consuzo, dated as Tertiary, which intrudes the Chicama fm. slates and the Chimu fm. quartzites. The main veins trend N-S cutting the stock, although there are also NE-SW and NWSE systems, hosted by the metamorphic rocks. The ore mineralogy comprises wolframite (hubnerite), tetrahedrite/tennantite, sphalerite and galena in a gangue of quartz, fluorite, sericite, pyrite and carbonates, and minor molybdenite, chalcopyrite, bornite, arsenopyrite, enargite (luzonite), stolzite, scheelite, zinnwaldite, topaz, tungstite and native arsenic. Previous studies have characterized Pasto Bueno as a deposit with a large component of greisen, with an evolution of the veins from an early barren 400 oC event , followed by economic mineralization of about 220-250 °C and a late event of 175 -220 oC rich in CO2. Wolframite precipitation occurred from a purely hydrothermal fluid; however, this precipitation was controlled by an external flux of meteoric and/or metamorphic waters. Microthermometric studies of the 3 main structures of the district (Consuelo, Alonso-Fenix and Chabuca veins) have been carried out to depict the evolution of the mineralizing fluid coming from the stock (Consuelo vein) into the metasedimentary rocks of the Chimu and Chicama fm. (Alonso-Fenix and Chabuca veins). The sampling was performed over the main event of mineralization. These samples were subject to a quick plate petrography study in order to select the optimal samples for further microthermometry studies. Before the freezing/heating measures, a fluid inclusion petrography study was done to characterize and select the representative F.I. Interpretation of results has confirmed the existence of a previous episode of higher temperature, over 282 °C, and a mineralizing event with temperatures of about 200-240 °C. However, obtained salinities, about 5 wt% NaCl equivalents, are much lower than those previously reported, about 11-17 wt% NaCl equivalents. A last fluid, rich in CO2, but of higher temperature, about 270 oC, has been characterized. Isothermal gradients show two foci for the hydrothermal fluids: the first one associated to the Consuzo stock as shown in the Consuelo vein, and the second one related to the thrust fault which places the Chicama fm. slates over the Chimu fm. quartzites in the Chabuca vein area. This second focus may correspond to an external input of metamorphic waters. Finally, some guidelines have been given to guide future explorations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ternary molybdates and tungstates ABO4 (A=Ca, Pb and B= Mo, W) are a group of materials that could be used for a variety of optoelectronic applications. We present a study of the optoelectronic properties based on first-principles using several orbitaldependent one-electron potentials applied to several orbital subspaces. The optical properties are split into chemical-species contributions in order to quantify the microscopic contributions. Furthermore, the effect of using several one-electron potentials and orbital subspaces is analyzed. From the results, the larger contribution to the optical absorption comes from the B-O transitions. The possible use as multi-gap solar cell absorbents is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mining is an activity of great economic and social value, assisting in the development of the country. However, it can be extremely harmful to the environment if no proper waste management study exists as mitigation measure its effects. Sample some of these harmful effects are pollution: water, through the seepage of waste into the groundwater; soil; of fauna and flora; sound (due to the noise of machines); visual from the residue stored in the open, changing the local landscape; and air. One way to mitigate environmental impacts caused by mining is the proper management of their waste through their use on highways. To that end, this paper proposes to give an appropriate destination to grit coming from the beneficiation of scheelite, due to mining activity from mining group Tomaz Salustino in Brejuí mine, located in the city of Currais Novos in the state of Rio Grande do Norte. This work was developed in four stages. The first comprised the chemical and mineralogical tests, DRX and FRX in which they sought to discover the composition of the material studied. The next step involved the physical characteristics of the waste by means of specific tests and grinding the solid mass, LL and LP. The third stage included the specific tests applied to the pavement, with the compaction test and test Index Support California. Finally, the fourth stage was the mechanical characterization, represented by direct shear tests, both in the flooded condition and not in flooded condition. The technical feasibility of using the modified energie compacted in layers of subbase power has been verified. In normal and intermediate energies is feasible to use less noble as layers as the subgrade. The incorporation of the waste in layers of road pavements provide an alternative to conventionally used in paving aggregates, providing a proper disposal of tailings from scheelite, as well as environmental preservation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wydział Fizyki

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results