936 resultados para Scheduler simulator
Resumo:
A model system, HOOFS (Hierarchical Object Orientated Foraging Simulator), has been developed to study foraging by animals in a complex environment. The model is implemented using an individual-based object-orientated structure. Different species of animals inherit their general properties from a generic animal object which inherits from the basic dynamic object class. Each dynamic object is a separate program thread under the control of a central scheduler. The environment is described as a map of small hexagonal patches, each with their own level of resources and a patch-specific rate of resource replenishment. Each group of seven patches (0th order) is grouped into a Ist order super-patch with seven nth order super-patches making up a n + 1th order super-patch for n up to a specified value. At any time each animal is associated with a single patch. Patch choice is made by combining the information on the resources available within different order patches and super-patches along with information on the spatial location of other animals. The degree of sociality of an animal is defined in terms of optimal spacing from other animals and by the weighting of patch choice based on social factors relative to that based on food availability. Information, available to each animal, about patch resources diminishes with distance from that patch. The model has been used to demonstrate that social interactions can constrain patch choice and result in a short-term reduction of intake and a greater degree of variability in the level of resources in patches. We used the model to show that the effect of this variability on the animal's intake depends on the pattern of patch replenishment. (C) 1998 Elsevier Science B.V. All rights reserved.</p>
Resumo:
Purpose: To determine the efficacy of a custom made wheelchair simulation in training children to use a powered wheelchair (PWC). Design: Randomised controlled trial employing the 4C/ID-model of learning. Twenty-eight typically developing children (13M, 15F; mean age 6 years, SD 6 months) were assessed on their operation of a PWC using a functional evaluation rating scale. Participants were randomly assigned to intervention (8x 30minute training sessions using a joystick operated wheelchair simulation) or control conditions (no task), and were re-assessed on their PWC use following the intervention phase. Additional data from the simulation on completion times, errors and total scores were recorded for the intervention group. Results: Analysis of variance showed a main effect of time, with planned comparisons revealing a statistically significant change in PWC use for the intervention (p = 0.022) but not the control condition. Whilst the intervention group showed greater improvement than the controls this did not reach statistical significance. Multiple regression analyses showed that gender was predictive of pre-test (p = 0.005) functional ability. Implications: A simulated wheelchair task appears to be effective in helping children learn to operate a PWC. Greater attention should be given to female learners who underperformed when compared to their male counterparts. This low cost intervention could be easily employed at home to reduce PWC training times in children with motor disorders.
Resumo:
Task dataflow languages simplify the specification of parallel programs by dynamically detecting and enforcing dependencies between tasks. These languages are, however, often restricted to a single level of parallelism. This language design is reflected in the runtime system, where a master thread explicitly generates a task graph and worker threads execute ready tasks and wake-up their dependents. Such an approach is incompatible with state-of-the-art schedulers such as the Cilk scheduler, that minimize the creation of idle tasks (work-first principle) and place all task creation and scheduling off the critical path. This paper proposes an extension to the Cilk scheduler in order to reconcile task dependencies with the work-first principle. We discuss the impact of task dependencies on the properties of the Cilk scheduler. Furthermore, we propose a low-overhead ticket-based technique for dependency tracking and enforcement at the object level. Our scheduler also supports renaming of objects in order to increase task-level parallelism. Renaming is implemented using versioned objects, a new type of hyper object. Experimental evaluation shows that the unified scheduler is as efficient as the Cilk scheduler when tasks have no dependencies. Moreover, the unified scheduler is more efficient than SMPSS, a particular implementation of a task dataflow language.
Resumo:
Research in the field of sports performance is constantly developing new technology to help extract meaningful data to aid in understanding in a multitude of areas such as improving technical or motor performance. Video playback has previously been extensively used for exploring anticipatory behaviour. However, when using such systems, perception is not active. This loses key information that only emerges from the dynamics of the action unfolding over time and the active perception of the observer. Virtual reality (VR) may be used to overcome such issues. This paper presents the architecture and initial implementation of a novel VR cricket simulator, utilising state of the art motion capture technology (21 Vicon cameras capturing kinematic profile of elite bowlers) and emerging VR technology (Intersense IS-900 tracking combined with Qualisys Motion capture cameras with visual display via Sony Head Mounted Display HMZ-T1), applied in a cricket scenario to examine varying components of decision and action for cricket batters. This provided an experience with a high level of presence allowing for a real-time egocentric view-point to be presented to participants. Cyclical user-testing was carried out, utilisng both qualitative and quantitative approaches, with users reporting a positive experience in use of the system.
Resumo:
In the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.
Resumo:
The ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.
Resumo:
Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.
Resumo:
This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.
Resumo:
The restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.