986 resultados para Scanner intraoral
Resumo:
AIM: To compare intraoral occlusal (OC) and periapical (PA) radiographs vs. limited cone beam computed tomography (CBCT) in diagnosing root-fractured permanent teeth. MATERIAL AND METHODS: In 38 patients (mean age 24 years, range 8-52 years) with 44 permanent teeth with horizontal root fractures, intraoral radiographs (PA and OC) and limited CBCT were used to evaluate the location (apical, middle, cervical third of the root) and angulation of the fracture line. Furthermore, the conventional radiographs and CBCT images were compared for concordance of fracture location. RESULTS: In the PA and OC radiographs, 28 fractures (63.6%) were located in the middle third of the root, 11 (25.0%) in the apical third and 5 (11.4%) in the cervical third. The PA/OC radiographs and the sagittal CBCT images (facial aspect) yielded the same level of root fracture in 70.5% of cases (31 teeth; 95% CI: 54.1-82.7%). The PA/OC radiographs and sagittal CBCT images (palatal aspect) showed the same level of root fracture in 31.8% of cases. There was a statistically significant association between the angle at which the root fracture line intersected the axis of the tooth and the level of root fracture in the facial aspect of the sagittal CBCT images. CONCLUSIONS: The diagnosis of the location and angulation of root fractures based on limited CBCT imaging differs significantly from diagnostic procedures based on intraoral radiographs (PA/OC) alone. The clinical significance for treatment strategies and for the prognosis of root-fractured teeth has to be addressed in future studies.
Resumo:
OBJECTIVES: To demonstrate the feasibility of panoramic image subtraction for implant assessment. STUDY DESIGN: Three titanium implants were inserted into a fresh pig mandible. One intraoral and 2 panoramic images were obtained at baseline and after each of 6 incremental (0.3, 0.6, 1.0, 1.5, 2.0, 2.5 mm) removals of bone. For each incremental removal of bone, the mandible was removed from and replaced in the holding device. Images representing incremental bone removals were registered by computer with the baseline images and subtracted. Assessment of the subtraction images was based on visual inspection and analysis of structured noise. RESULTS: Incremental bone removals were more visible in intraoral than in panoramic subtraction images; however, computer-based registration of panoramic images reduced the structured noise and enhanced the visibility of incremental removals. CONCLUSION: The feasibility of panoramic image subtraction for implant assessment was demonstrated.
Resumo:
Heutzutage stehen zunehmend – z.B. durch den raschen Fortschritt bei den bildgebenden Verfahren – digitale Datensätze im Dentalbereich zur Verfügung. CAD/CAM-syteme gehören dabei in der Zahntechnik längst zum Stande der Technik. Für die Anwendung derartiger Systeme ist jedoch ein Gipsmodell nötig, welches zum Beginn der Prozesskette vom Zahntechniker mittels eines optischen Scanners digitalisiert wird. Die Weiterentwicklung intraoraler Scanner ermöglicht heutzutage außerdem die Digitalisierung ganzer Kiefer im Patientenmund durch den Zahnarzt. Insbesondere für z.B. die ästhetischen Restaurationen bildet hier das zahntechnische Modell nach wie vor die unersetzliche Arbeitsgrundlage für den Techniker. In der vorliegenden Arbeit wird dazu ein Rapid Manufacturing Verfahren zur Herstellung von Dentalmodellen auf Basis der Stereolithographie vorgestellt. Dabei wird auf die besonderen Anforderungen hinsichtlich Präzision, Robustheit und Wirtschaftlichkeit von generativen Fertigungsverfahren für dentale Applikationen eingegangen und eine neu entwickelte Baustrategie vorgestellt, mittels derer die o.g. Anforderungen erfüllt werden
Resumo:
Objective: The PEM Flex Solo II (Naviscan, Inc., San Diego, CA) is currently the only commercially-available positron emission mammography (PEM) scanner. This scanner does not apply corrections for count rate effects, attenuation or scatter during image reconstruction, potentially affecting the quantitative accuracy of images. This work measures the overall quantitative accuracy of the PEM Flex system, and determines the contributions of error due to count rate effects, attenuation and scatter. Materials and Methods: Gelatin phantoms were designed to simulate breasts of different sizes (4 – 12 cm thick) with varying uniform background activity concentration (0.007 – 0.5 μCi/cc), cysts and lesions (2:1, 5:1, 10:1 lesion-to-background ratios). The overall error was calculated from ROI measurements in the phantoms with a clinically relevant background activity concentration (0.065 μCi/cc). The error due to count rate effects was determined by comparing the overall error at multiple background activity concentrations to the error at 0.007 μCi/cc. A point source and cold gelatin phantoms were used to assess the errors due to attenuation and scatter. The maximum pixel values in gelatin and in air were compared to determine the effect of attenuation. Scatter was evaluated by comparing the sum of all pixel values in gelatin and in air. Results: The overall error in the background was found to be negative in phantoms of all thicknesses, with the exception of the 4-cm thick phantoms (0%±7%), and it increased with thickness (-34%±6% for the 12-cm phantoms). All lesions exhibited large negative error (-22% for the 2:1 lesions in the 4-cm phantom) which increased with thickness and with lesion-to-background ratio (-85% for the 10:1 lesions in the 12-cm phantoms). The error due to count rate in phantoms with 0.065 μCi/cc background was negative (-23%±6% for 4-cm thickness) and decreased with thickness (-7%±7% for 12 cm). Attenuation was a substantial source of negative error and increased with thickness (-51%±10% to -77% ±4% in 4 to 12 cm phantoms, respectively). Scatter contributed a relatively constant amount of positive error (+23%±11%) for all thicknesses. Conclusion: Applying corrections for count rate, attenuation and scatter will be essential for the PEM Flex Solo II to be able to produce quantitatively accurate images.
Resumo:
PURPOSE Computed tomography (CT) accounts for more than half of the total radiation exposure from medical procedures, which makes dose reduction in CT an effective means of reducing radiation exposure. We analysed the dose reduction that can be achieved with a new CT scanner [Somatom Edge (E)] that incorporates new developments in hardware (detector) and software (iterative reconstruction). METHODS We compared weighted volume CT dose index (CTDIvol) and dose length product (DLP) values of 25 consecutive patients studied with non-enhanced standard brain CT with the new scanner and with two previous models each, a 64-slice 64-row multi-detector CT (MDCT) scanner with 64 rows (S64) and a 16-slice 16-row MDCT scanner with 16 rows (S16). We analysed signal-to-noise and contrast-to-noise ratios in images from the three scanners and performed a quality rating by three neuroradiologists to analyse whether dose reduction techniques still yield sufficient diagnostic quality. RESULTS CTDIVol of scanner E was 41.5 and 36.4 % less than the values of scanners S16 and S64, respectively; the DLP values were 40 and 38.3 % less. All differences were statistically significant (p < 0.0001). Signal-to-noise and contrast-to-noise ratios were best in S64; these differences also reached statistical significance. Image analysis, however, showed "non-inferiority" of scanner E regarding image quality. CONCLUSIONS The first experience with the new scanner shows that new dose reduction techniques allow for up to 40 % dose reduction while still maintaining image quality at a diagnostically usable level.
Resumo:
AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.
Resumo:
Fordyce granules of the oral mucosa are often discovered during routine dental examinations. They are considered anatomic variations and are typically seen on the labial and buccal mucosa in adults. The present case report describes for the first time in the literature an atypical location of an enlarged Fordyce granule with local bone destruction. The diagnostic process, surgical treatment, and follow-up are presented and discussed.
Resumo:
INTRODUCTION The first ophthalmologic complication in conjunction with a dental anesthesia was reported in 1936. The objective of the present study was a detailed analysis of case reports about that topic. MATERIAL AND METHODS After conducting a literature search in PubMed this study analyzed 108 ophthalmologic complications following intraoral local anesthesia in 65 case reports with respect to patient-, anesthesia-, and complication- related factors. RESULTS The mean age of the patients was 33.8 years and females predominated (72.3%). The most commonly reported complication was diplopia (39.8%), mostly resulting from paralysis of the lateral rectus muscle. Other relatively frequent complications included ptosis (16.7%), mydriasis (14.8%) and amaurosis (13%). Ophthalmologic complications were mainly associated with block anesthesia of the inferior alveolar nerve (45.8%) or the posterior superior alveolar nerve (40.3%). Typically, the ophthalmologic complications in conjunction with intraoral local anesthesia had an immediate to short onset, and disappeared as the anesthesia subsided. DISCUSSION AND CONCLUSION The increased number of ophthalmologic complications after intraoral local anesthesia in females may suggest a gender effect. Double vision (diplopia) is the most frequently described complication, which is usually completely reversible like the other reported ophthalmologic complications.
Resumo:
OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.
Resumo:
The present article reviews the different types of ophthalmologic complications following administration of intraoral local anesthesia. Since the first report by Brain in 1936, case reports about that topic have been published regularly in the literature. However, clinical studies evaluating the incidence of ophthalmologic complications after intraoral local anesthesia are rarely available. Previous data point to a frequency ranging from 0.03% to 0.13%. The most frequently described ophthalmologic complications include diplopia (double vision), ptosis (drooping of upper eyelid), and mydriasis (dilatation of pupil). Disorders that rather affect periorbital structures than the eye directly include facial paralysis and periorbital blanching (angiospasm). Diverse pathophysiologic mechanisms and causes have been reported in the literature, with the inadvertent intravascular administration of the local anesthetic considered the primary reason. The agent as well as the vasopressor is transported retrogradely via arteries or veins to the orbit or to periorbital structures (such as the cavernous sinus) with subsequent anesthesia of nerves and paralysis of muscles distant from the oral cavity. In general the ophthalmologic complications begin shortly after administration of the local anesthesia, and disappear once the local anesthesia has subsided.
Resumo:
Geochemical and mineralogical proxies for paleoenvironmental conditions have the underlying assumption that climate variations have an impact on terrestrial weathering conditions. Varying properties of terrigenous sediments deposited at sea are therefore often interpreted in terms of paleoenvironmental change. Also in gravity core GeoB9307-3 (18° 33.99' S, 37° 22.89' E), located off the Zambezi River, environmental changes during Heinrich Stadial 1 (HS 1) and the Younger Dryas (YD) are accompanied by changing properties of the terrigenous sediment fraction. Our study focuses on the relationship of variability in the hydrological system and changes in the magnetic properties, major element geochemistry and granulometry of the sediments. We propose that changes in bulk sedimentary properties concur with environmental change, although not as a direct response of climate driven pedogenic processes. Spatial varying rainfall intensities on a sub-basin scale modify sediment export from different parts of the Zambezi River basin. During humid phases, such as HS 1 and the YD, sediment was mainly exported from the coastal areas, while during more arid phases sediments mirror the hinterland soil and lithological properties and are likely derived from the northern Shire sub-basin. We propose that a de-coupling of sedimentological and organic signals with variable discharge and erosional activity can occur.