968 resultados para Scale invariant feature transform (SIFT)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two late Paleozoic glacial rhythmite successions from the Itarare Group (Parana Basin, Brazil) were examined for paleoclimate variations. Paleomagnetic (characteristic remanent magnetization, ChRM) and magnetic susceptibility (K(z)) measurements taken from the rhythmites are interpreted as paleoclimatic proxies. Ratios of low-frequency components in the K(z) variations suggest Milankovitch periodicities; this leads to recognition of other, millennial-scale variations reminiscent of abrupt climate changes during late Quaternary time, and are suggestive of Bond cycles and the 2.4 k.y. solar cycle. We infer from these patterns that millennial-scale climate change is not restricted to the Quaternary Period, and that millennial forcing mechanisms may have been prevalent throughout geologic time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Craniosynostosis consists of a premature fusion of the sutures in an infant skull that restricts skull and brain growth. During the last decades, there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumference, and intracranial volume. However, these variables have failed in describing the local deformations and morphological changes that may have a role in the neurologic disorders observed in the patients. This report describes a rigid image registration-based method to evaluate outcomes of craniosynostosis surgical treatments, local quantification of head growth, and indirect intracranial volume change measurements. The developed semiautomatic analysis method was applied to computed tomography data sets of a 5-month-old boy with sagittal craniosynostosis who underwent expansion of the posterior skull with cranioplasty. Quantification of the local changes between pre- and postoperative images was quantified by mapping the minimum distance of individual points from the preoperative to the postoperative surface meshes, and indirect intracranial volume changes were estimated. The proposed methodology can provide the surgeon a tool for the quantitative evaluation of surgical procedures and detection of abnormalities of the infant skull and its development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an open channel, the transition from super- to sub-critical flow is a flow singularity (the hydraulic jump) characterised by a sharp rise in free-surface elevation, strong turbulence and air entrainment in the roller. A key feature of the hydraulic jump flow is the strong free-surface aeration and air-water flow turbulence. In the present study, similar experiments were conducted with identical inflow Froude numbers Fr1 using a geometric scaling ratio of 2:1. The results of the Froude-similar experiments showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. Void fraction distributions implied comparatively greater detrainment at low Reynolds numbers yielding some lesser aeration of the jump roller. The dimensionless bubble count rates were significantly lower in the smaller channel, especially in the mixing layer. The bubble chord time distributions were quantitatively close in both channels, and they were not scaled according to a Froude similitude. Simply the hydraulic jump remains a fascinating two-phase flow motion that is still poorly understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear Dynamics, Vol. 29