946 resultados para Satellite imagery data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud imagery is not currently used in numerical weather prediction (NWP) to extract the type of dynamical information that experienced forecasters have extracted subjectively for many years. For example, rapidly developing mid-latitude cyclones have characteristic signatures in the cloud imagery that are most fully appreciated from a sequence of images rather than from a single image. The Met Office is currently developing a technique to extract dynamical development information from satellite imagery using their full incremental 4D-Var (four-dimensional variational data assimilation) system. We investigate a simplified form of this technique in a fully nonlinear framework. We convert information on the vertical wind field, w(z), and profiles of temperature, T(z, t), and total water content, qt (z, t), as functions of height, z, and time, t, to a single brightness temperature by defining a 2D (vertical and time) variational assimilation testbed. The profiles of w, T and qt are updated using a simple vertical advection scheme. We define a basic cloud scheme to obtain the fractional cloud amount and, when combined with the temperature field, we convert this information into a brightness temperature, having developed a simple radiative transfer scheme. With the exception of some matrix inversion routines, all our code is developed from scratch. Throughout the development process we test all aspects of our 2D assimilation system, and then run identical twin experiments to try and recover information on the vertical velocity, from a sequence of observations of brightness temperature. This thesis contains a comprehensive description of our nonlinear models and assimilation system, and the first experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT World Heritage sites provide a glimpse into the stories and civilizations of the past. There are currently 1007 unique World Heritage properties with 779 being classified as cultural sites, 197 as natural sites, and 31 falling into the categories of both cultural and natural sites (UNESCO & World Heritage Centre, 1992-2015). However, of these 1007 World Heritage sites, at least 46 are categorized as in danger and this number continues to grow. These unique and irreplaceable sites are exceptional because of their universality. Consequently, since World Heritage sites belong to all the people of the world and provide inspiration and admiration to all who visit them, it is our responsibility to help preserve these sites. The key form of preservation involves the individual monitoring of each site over time. While traditional methods are still extremely valuable, more recent advances in the field of geographic and spatial technologies including geographic information systems (GIS), laser scanning, and remote sensing, are becoming more beneficial for the monitoring and overall safeguarding of World Heritage sites. Through the employment and analysis of more accurately detailed spatial data, World Heritage sites can be better managed. There is a strong urgency to protect these sites. The purpose of this thesis is to describe the importance of taking care of World Heritage sites and to depict a way in which spatial technologies can be used to monitor and in effect preserve World Heritage sites through the utilization of remote sensing imagery. The research conducted in this thesis centers on the Everglades National Park, a World Heritage site that is continually affected by changes in vegetation. Data used include Landsat satellite imagery that dates from 2001-2003, the Everglades' boundaries shapefile, and Google Earth imagery. In order to conduct the in-depth analysis of vegetation change within the selected World Heritage site, three main techniques were performed to study changes found within the imagery. These techniques consist of conducting supervised classification for each image, incorporating a vegetation index known as Normalized Vegetation Index (NDVI), and utilizing the change detection tool available in the Environment for Visualizing Images (ENVI) software. With the research and analysis conducted throughout this thesis, it has been shown that within the three year time span (2001-2003), there has been an overall increase in both areas of barren soil (5.760%) and areas of vegetation (1.263%) with a decrease in the percentage of areas classified as sparsely vegetated (-6.987%). These results were gathered through the use of the maximum likelihood classification process available in the ENVI software. The results produced by the change detection tool which further analyzed vegetation change correlate with the results produced by the classification method. As well, by utilizing the NDVI method, one is able to locate changes by selecting a specific area and comparing the vegetation index generated for each date. It has been found that through the utilization of remote sensing technology, it is possible to monitor and observe changes featured within a World Heritage site. Remote sensing is an extraordinary tool that can and should be used by all site managers and organizations whose goal it is to preserve and protect World Heritage sites. Remote sensing can be used to not only observe changes over time, but it can also be used to pinpoint threats within a World Heritage site. World Heritage sites are irreplaceable sources of beauty, culture, and inspiration. It is our responsibility, as citizens of this world, to guard these treasures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.