988 resultados para Satellite dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yangtze River Basin downstream of China's Three Gorges Dam (TGD) (thereafter referred to as "downstream" basin) hosts the largest cluster of freshwater lakes in East Asia. These lakes are crucial water stocks to local biophysical environments and socioeconomic development. Existing studies document that individual lakes in this region have recently experienced dramatic changes under the context of enduring meteorological drought, continuous population growth, and extensive water regulation since TGD's initial impoundment (i.e., June, 2003). However, spatial and temporal patterns of lake dynamics across the complete downstream Yangtze basin remain poorly characterized. Using daily MODIS imagery and an advanced thematic mapping scheme, this study presents a comprehensive monitoring of area dynamics in the downstream lake system at a 10-day temporal resolution during 2000-2011. The studied lakes constitute ~76% (~11,400 km**2) of the total downstream lake area, including the entire +70 major lakes larger than 20 km**2. The results reveal a decadal net decline in lake inundation area across the downstream Yangtze Basin, with a cumulative decrease of 849 km**2 or 7.4% from 2000 to 2011. Despite an excessive precipitation anomaly in the year 2010, the decreasing trend was tested significant in all seasons. The most substantial decrease in the post-TGD period appears in fall (1.1%/yr), which intriguingly coincides with the TGD water storage season. Regional lake dynamics exhibit contrasting spatial patterns, manifested as evident decrease and increase of aggregated lake areas respectively within and beyond the Yangtze Plain. This contrast suggests a marked vulnerability of lakes in the Yangtze Plain, to not only local meteorological variability but also intensified human water regulations from both the upstream Yangtze main stem (e.g., the TGD) and tributaries (e.g., lakes/reservoirs beyond the Yangtze Plain). The produced lake mapping result and derived lake area dynamics across the downstream Yangtze Basin provides a crucial monitoring basis for continuous investigations of changing mechanisms in the Yangtze lake system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the rate of erosion during the 1951-2006 period on the Bykovsky Peninsula, located north-east of the harbour town of Tiksi, north Siberia. Its coastline, which is characterized by the presence of ice-rich sediment (Ice Complex) and the vicinity of the Lena River Delta, retreated at a mean rate of 0.59 m/yr between 1951 and 2006. Total erosion ranged from 434 m of erosion to 92 m of accretion during these 56 years and exhibited large variability (sigma = 45.4). Ninety-seven percent of the rates observed were less than 2 m/yr and 81.6% were less than 1 m/yr. No significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. Erosion modes and rates actually appear to be strongly dependant on the nature of the backshore material, erosion being stronger along low-lying coastal stretches affected by past or current thermokarst activity. The juxtaposition of wind records monitored at the town of Tiksi and erosion records yielded no significant relationship despite strong record amplitude for both data sets. We explain this poor relationship by the only rough incorporation of sea-ice cover in our storm extraction algorithm, the use of land-based wind records vs. offshore winds, the proximity of the peninsula to the Lena River Delta freshwater and sediment plume and the local topographical constraints on wave development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a Lagrangian descriptor (the so called function M) which measures the length of particle trajectories on the ocean surface over a given interval of time. With this tool we identify the Lagrangian skeleton of the flow and compare it on three datasets over the Gulf of Mexico during the year 2010. The satellite altimetry data used come from AVISO and simulations from HYCOM GOMl0.04 experiments 30.1 and 31.0. We contrast the Lagrangian structure and transport using the evolution of several surface drifters. We show that the agreement in relevant cases between Lagrangian structures and dynamics of drifters depends on the quality of the data on the studied area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El principal objetivo de la tesis es estudiar el acoplamiento entre los subsistemas de control de actitud y de control térmico de un pequeño satélite, con el fin de buscar la solución a los problemas relacionados con la determinación de los parámetros de diseño. Se considera la evolución de la actitud y de las temperaturas del satélite bajo la influencia de dos estrategias de orientación diferentes: 1) estabilización magnética pasiva de la orientación (PMAS, passive magnetic attitude stabilization), y 2) control de actitud magnético activo (AMAC, active magnetic attitude control). En primer lugar se presenta el modelo matemático del problema, que incluye la dinámica rotacional y el modelo térmico. En el problema térmico se considera un satélite cúbico modelizado por medio de siete nodos (seis externos y uno interno) aplicando la ecuación del balance térmico. Una vez establecido el modelo matemático del problema, se estudia la evolución que corresponde a las dos estrategias mencionadas. La estrategia PMAS se ha seleccionado por su simplicidad, fiabilidad, bajo coste, ahorrando consumo de potencia, masa coste y complejidad, comparado con otras estrategias. Se ha considerado otra estrategia de control que consigue que el satélite gire a una velocidad requerida alrededor de un eje deseado de giro, pudiendo controlar su dirección en un sistema inercial de referencia, ya que frecuentemente el subsistema térmico establece requisitos de giro alrededor de un eje del satélite orientado en una dirección perpendicular a la radiación solar incidente. En relación con el problema térmico, para estudiar la influencia de la velocidad de giro en la evolución de las temperaturas en diversos puntos del satélite, se ha empleado un modelo térmico linealizado, obtenido a partir de la formulación no lineal aplicando un método de perturbaciones. El resultado del estudio muestra que el tiempo de estabilización de la temperatura y la influencia de las cargas periódicas externas disminuye cuando aumenta la velocidad de giro. Los cambios de temperatura se reducen hasta ser muy pequeños para velocidades de rotación altas. En relación con la estrategia PMAC se ha observado que a pesar de su uso extendido entre los micro y nano satélites todavía presenta problemas que resolver. Estos problemas están relacionados con el dimensionamiento de los parámetros del sistema y la predicción del funcionamiento en órbita. Los problemas aparecen debido a la dificultad en la determinación de las características magnéticas de los cuerpos ferromagnéticos (varillas de histéresis) que se utilizan como amortiguadores de oscilaciones en los satélites. Para estudiar este problema se presenta un modelo analítico que permite estimar la eficiencia del amortiguamiento, y que se ha aplicado al estudio del comportamiento en vuelo de varios satélites, y que se ha empleado para comparar los resultados del modelo con los obtenidos en vuelo, observándose que el modelo permite explicar satisfactoriamente el comportamiento registrado. ABSTRACT The main objective of this thesis is to study the coupling between the attitude control and thermal control subsystems of a small satellite, and address the solution to some existing issues concerning the determination of their parameters. Through the thesis the attitude and temperature evolution of the satellite is studied under the influence of two independent attitude stabilization and control strategies: (1) passive magnetic attitude stabilization (PMAS), and (2) active magnetic attitude control (AMAC). In this regard the mathematical model of the problem is explained and presented. The mathematical model includes both the rotational dynamics and the thermal model. The thermal model is derived for a cubic satellite by solving the heat balance equation for 6 external and 1 internal nodes. Once established the mathematical model of the problem, the above mentioned attitude strategies were applied to the system and the temperature evolution of the 7 nodes of the satellite was studied. The PMAS technique has been selected to be studied due to its prevalent use, simplicity, reliability, and cost, as this strategy significantly saves the overall power, weight, cost, and reduces the complexity of the system compared to other attitude control strategies. In addition to that, another control law that provides the satellite with a desired spin rate along a desired axis of the satellite, whose direction can be controlled with respect to the inertial reference frame is considered, as the thermal subsystem of a satellite usually demands a spin requirement around an axis of the satellite which is positioned perpendicular to the direction of the coming solar radiation. Concerning the thermal problem, to study the influence of spin rate on temperature evolution of the satellite a linear approach of the thermal model is used, which is based on perturbation theory applied to the nonlinear differential equations of the thermal model of a spacecraft moving in a closed orbit. The results of this study showed that the temperature stabilization time and the periodic influence of the external thermal loads decreases by increasing the spin rate. However, the changes become insignificant for higher values of spin rate. Concerning the PMAS strategy, it was observed that in spite of its extended application to micro and nano satellites, still there are some issues to be solved regarding this strategy. These issues are related to the sizing of its system parameters and predicting the in-orbit performance. The problems were found to be rooted in the difficulties that exist in determining the magnetic characteristics of the ferromagnetic bodies (hysteresis rods) that are applied as damping devices on-board satellites. To address these issues an analytic model for estimating their damping efficiency is proposed and applied to several existing satellites in order to compare the results with their respective in-flight data. This model can explain the behavior showed by these satellites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new implementations of a tethered satellite system to provide aeroassist during a planetary flyby are investigated. In each mission scenario the interaction of the Martian atmosphere with an aerodynamic lifting surface, which is tethered to an orbiter, is used to perturb the flight path of the system. The aerodynamic forces generated by interacting with the atmosphere augment the gravity assist provided by the planet. In the first aerogravity-assist maneuver the tethered satellite system has congruent post- and preflyby configurations. The second scenario, which is referred to as a dual-destination mission, involves the system mass being separated during the flyby. Both of these aerogravity-assist maneuvers are shown to facilitate significant, propellant-free velocity changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last twenty or so years the results of theory and experiment have produced much information on the characteristics of gas-surface interactions relevant to a satellite in hyperthermal free-molecular flow. This thesis contains reviews of the rarefied gas dynamics applicable to satellites and has attempted to compare existing models of gas-surface interaction with contemporary knowledge of such systems. It is shown that a more natural approach would be to characterise the gas-surface interaction using the normal and tangential momentum accommodation coefficients, igma' and igma respectively, specifically in the form igma = constant , igma' = igma'0 -igma'1sec i where i is the angle subtended between the incident flow and the surface normal and igma,igma'0 and igma'1 are constants. Adopting these relationships, the effects of atmospheric lift on inclination, i, and atmospheric drag on the semi-major axis, a, and eccentricity, e, have been investigated. Applications to ANS-1 (1974-70A) show that the observed perturbation in i can be ascribed primarily to non-zero igma'1 whilst perturbations in a and e produce constraint equations between the three parameters. The numerical results seem to imply that a good theoretical orbit is achieved despite a much lower drag coefficient than anticipated by earlier theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jaíba Irrigated Perimeter is a large irrigated agriculturearea, located in the region Forest Jaíba between the SãoFrancisco and Verde Grande rivers, in the Brazilian semi-arid region. In 2014, irrigators thisthe region face losses in theinterruption of new plantings in irrigated areas due to water scarcity. The objective ofthis study is combine the modelto estimate the Monteith BIO with the SAFER algorithm in the case of obtaining ET, to analyze the dynamics of naturalvegetation and irrigated crops in water scarcity period. For application of the model are necessary data frommeteorological stations and satellite images. Were used 23satellite images of MODIS withspatial resolution of 250mand temporal 16 days, of 2014 year. For analyze the results,we used central pivots irrigation mask of Minas Geraisstate, Brazil. In areas with irrigated agriculture with central pivot, the mean values of BIO over the year 2014 were88.96 kg.ha-1.d-1. The highest values occurred between April 23 and May 8, with BIO 139 kg.ha-1.d-1. For areas withnatural vegetation, the average BIO was 88.34 kg.ha-1.d-1with lower values in September. Estimates of ET varied withthe lowest values of ET observedin natural vegetation 1,91±1,22 mm.d-1and the highest values in irrigated area isobserved 3,51±0,97 mm.d-1. Results of this study can assist in monitoring of river basins, contributing to themanagement irrigated agriculture, with the trend of scarcity of water resources and increasing conflicts for the wateruse.