371 resultados para Satelites - Jupiter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of electrodynamic bare tethers in exploring the Jovian system by tapping its rotational energy for power and propulsion is studied. The position of perijove and apojove in elliptical orbits, relative to the synchronous orbit at 2.24 times Jupiter’s radius, is exploited to conveniently make the induced Lorentz force to be drag or thrust, while generating power, and navigating the system. Capture and evolution to a low elliptical orbit near Jupiter, and capture into low circular orbits at moons Io and Europa are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tethered spacecraft missions to the Jovian system suit the use of electrodynamic tethers because: 1) magnetic stresses are 100 times greater than at the Earth; 2) the stationary orbit is one-third the relative distance for Earth; and 3) moon Io is a nearby giant plasma source. The (bare) tether is a reinforced aluminum foil with tens of kilometer length L and a fraction of millimeter thickness h, which collects electrons as an efficient Langmuir probe and can tap Jupiter’s rotational energy for both propulsion and power. In this paper, the critical capture operation is explicitly formulated in terms of orbit geometry and established magnetic and thermal plasma models. The design parameters L and h and capture perijove radius rp face opposite criteria independent of tape width. Efficient capture requires a low rp and a high L 3/2/h ratio. However, combined bounds on tether bowing and tether tensile stress, arising from a spin made necessary by the low Jovian gravity gradient, require a high rp and a low L 5/2/h ratio. Bounds on tether temperature again require a high rp and a low L 3/8/(tether emissivity)1/4 ratio. Optimal design values are discussed.